Results of the WMT21 Metrics Shared Task: Evaluating Metrics with Expert-based Human Evaluations on TED and News Domain
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10440531" target="_blank" >RIV/00216208:11320/21:10440531 - isvavai.cz</a>
Výsledek na webu
<a href="https://aclanthology.org/2021.wmt-1.73/" target="_blank" >https://aclanthology.org/2021.wmt-1.73/</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Results of the WMT21 Metrics Shared Task: Evaluating Metrics with Expert-based Human Evaluations on TED and News Domain
Popis výsledku v původním jazyce
This paper presents the results of the WMT21 Metrics Shared Task. Participants were asked to score the outputs of the translation systems competing in the WMT21 News Translation Task with automatic metrics on two different domains: news and TED talks. All metrics were evaluated on how well they correlate at the system- and segment-level with human ratings. Contrary to previous years' editions, this year we acquired our own human ratings based on expert-based human evaluation via Multidimensional Quality Metrics (MQM). This setup had several advantages: (i) expert-based evaluation has been shown to be more reliable, (ii) we were able to evaluate all metrics on two different domains using translations of the same MT systems, (iii) we added 5 additional translations coming from the same system during system development. In addition, we designed three challenge sets that evaluate the robustness of all automatic metrics. We present an extensive analysis on how well metrics perform on three language pairs:
Název v anglickém jazyce
Results of the WMT21 Metrics Shared Task: Evaluating Metrics with Expert-based Human Evaluations on TED and News Domain
Popis výsledku anglicky
This paper presents the results of the WMT21 Metrics Shared Task. Participants were asked to score the outputs of the translation systems competing in the WMT21 News Translation Task with automatic metrics on two different domains: news and TED talks. All metrics were evaluated on how well they correlate at the system- and segment-level with human ratings. Contrary to previous years' editions, this year we acquired our own human ratings based on expert-based human evaluation via Multidimensional Quality Metrics (MQM). This setup had several advantages: (i) expert-based evaluation has been shown to be more reliable, (ii) we were able to evaluate all metrics on two different domains using translations of the same MT systems, (iii) we added 5 additional translations coming from the same system during system development. In addition, we designed three challenge sets that evaluate the robustness of all automatic metrics. We present an extensive analysis on how well metrics perform on three language pairs:
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-26934X" target="_blank" >GX19-26934X: Neuronové reprezentace v multimodálním a mnohojazyčném modelování</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Sixth Conference on Machine Translation
ISBN
978-1-954085-94-7
ISSN
—
e-ISSN
—
Počet stran výsledku
42
Strana od-do
733-774
Název nakladatele
Association for Computational Linguistics
Místo vydání
Online
Místo konání akce
Online
Datum konání akce
10. 11. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—