Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The GEM Benchmark: Natural Language Generation, its Evaluation and Metrics

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10440535" target="_blank" >RIV/00216208:11320/21:10440535 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://aclanthology.org/2021.gem-1.10/" target="_blank" >https://aclanthology.org/2021.gem-1.10/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.18653/v1/2021.gem-1.10" target="_blank" >10.18653/v1/2021.gem-1.10</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The GEM Benchmark: Natural Language Generation, its Evaluation and Metrics

  • Popis výsledku v původním jazyce

    We introduce GEM, a living benchmark for natural language Generation (NLG), its Evaluation, and Metrics. Measuring progress in NLG relies on a constantly evolving ecosystem of automated metrics, datasets, and human evaluation standards. Due to this moving target, new models often still evaluate on divergent anglo-centric corpora with well-established, but flawed, metrics. This disconnect makes it challenging to identify the limitations of current models and opportunities for progress. Addressing this limitation, GEM provides an environment in which models can easily be applied to a wide set of tasks and in which evaluation strategies can be tested. Regular updates to the benchmark will help NLG research become more multilingual and evolve the challenge alongside models. This paper serves as the description of the data for the 2021 shared task at the associated GEM Workshop.

  • Název v anglickém jazyce

    The GEM Benchmark: Natural Language Generation, its Evaluation and Metrics

  • Popis výsledku anglicky

    We introduce GEM, a living benchmark for natural language Generation (NLG), its Evaluation, and Metrics. Measuring progress in NLG relies on a constantly evolving ecosystem of automated metrics, datasets, and human evaluation standards. Due to this moving target, new models often still evaluate on divergent anglo-centric corpora with well-established, but flawed, metrics. This disconnect makes it challenging to identify the limitations of current models and opportunities for progress. Addressing this limitation, GEM provides an environment in which models can easily be applied to a wide set of tasks and in which evaluation strategies can be tested. Regular updates to the benchmark will help NLG research become more multilingual and evolve the challenge alongside models. This paper serves as the description of the data for the 2021 shared task at the associated GEM Workshop.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics (GEM 2021)

  • ISBN

    978-1-954085-67-1

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    25

  • Strana od-do

    96-120

  • Název nakladatele

    Association for Computational Linguistics

  • Místo vydání

    Stroudsburg, PA, USA

  • Místo konání akce

    Online

  • Datum konání akce

    1. 8. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku