Evaluating the state-of-the-art of End-to-End Natural Language Generation: The E2E NLG challenge
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10424317" target="_blank" >RIV/00216208:11320/20:10424317 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=U.k_HzDbrw" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=U.k_HzDbrw</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.csl.2019.06.009" target="_blank" >10.1016/j.csl.2019.06.009</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evaluating the state-of-the-art of End-to-End Natural Language Generation: The E2E NLG challenge
Popis výsledku v původním jazyce
This paper provides a comprehensive analysis of the first shared task on End-to-End Natural Language Generation (NLG) and identifies avenues for future research based on the results. This shared task aimed to assess whether recent end-to-end NLG systems can generate more complex output by learning from datasets containing higher lexical richness, syntactic complexity and diverse discourse phenomena. Introducing novel automatic and human metrics, we compare 62 systems submitted by 17 institutions, covering a wide range of approaches, including machine learning architectures - with the majority implementing sequence-to-sequence models (seq2seq) - as well as systems based on grammatical rules and templates. Seq2seq-based systems have demonstrated a great potential for NLG in the challenge. We find that seq2seq systems generally score high in terms of word-overlap metrics and human evaluations of naturalness - with the winning Slug system (Juraska et al., 2018) being seq2seq-based. However, vanilla seq2se
Název v anglickém jazyce
Evaluating the state-of-the-art of End-to-End Natural Language Generation: The E2E NLG challenge
Popis výsledku anglicky
This paper provides a comprehensive analysis of the first shared task on End-to-End Natural Language Generation (NLG) and identifies avenues for future research based on the results. This shared task aimed to assess whether recent end-to-end NLG systems can generate more complex output by learning from datasets containing higher lexical richness, syntactic complexity and diverse discourse phenomena. Introducing novel automatic and human metrics, we compare 62 systems submitted by 17 institutions, covering a wide range of approaches, including machine learning architectures - with the majority implementing sequence-to-sequence models (seq2seq) - as well as systems based on grammatical rules and templates. Seq2seq-based systems have demonstrated a great potential for NLG in the challenge. We find that seq2seq systems generally score high in terms of word-overlap metrics and human evaluations of naturalness - with the winning Slug system (Juraska et al., 2018) being seq2seq-based. However, vanilla seq2se
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computer Speech and Language
ISSN
0885-2308
e-ISSN
—
Svazek periodika
59
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
34
Strana od-do
123-156
Kód UT WoS článku
000490540900008
EID výsledku v databázi Scopus
2-s2.0-85070102543