End-to-End Lexically Constrained Machine Translation for Morphologically Rich Languages
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10440543" target="_blank" >RIV/00216208:11320/21:10440543 - isvavai.cz</a>
Výsledek na webu
<a href="https://aclanthology.org/2021.acl-long.311" target="_blank" >https://aclanthology.org/2021.acl-long.311</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18653/v1/2021.acl-long.311" target="_blank" >10.18653/v1/2021.acl-long.311</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
End-to-End Lexically Constrained Machine Translation for Morphologically Rich Languages
Popis výsledku v původním jazyce
Lexically constrained machine translation allows the user to manipulate the output sentence by enforcing the presence or absence of certain words and phrases. Although current approaches can enforce terms to appear in the translation, they often struggle to make the constraint word form agree with the rest of the generated output. Our manual analysis shows that 46% of the errors in the output of a baseline constrained model for English to Czech translation are related to agreement. We investigate mechanisms to allow neural machine translation to infer the correct word inflection given lemmatized constraints. In particular, we focus on methods based on training the model with constraints provided as part of the input sequence. Our experiments on the English-Czech language pair show that this approach improves the translation of constrained terms in both automatic and manual evaluation by reducing errors in agreement. Our approach thus eliminates inflection errors, without introducing new errors or decr
Název v anglickém jazyce
End-to-End Lexically Constrained Machine Translation for Morphologically Rich Languages
Popis výsledku anglicky
Lexically constrained machine translation allows the user to manipulate the output sentence by enforcing the presence or absence of certain words and phrases. Although current approaches can enforce terms to appear in the translation, they often struggle to make the constraint word form agree with the rest of the generated output. Our manual analysis shows that 46% of the errors in the output of a baseline constrained model for English to Czech translation are related to agreement. We investigate mechanisms to allow neural machine translation to infer the correct word inflection given lemmatized constraints. In particular, we focus on methods based on training the model with constraints provided as part of the input sequence. Our experiments on the English-Czech language pair show that this approach improves the translation of constrained terms in both automatic and manual evaluation by reducing errors in agreement. Our approach thus eliminates inflection errors, without introducing new errors or decr
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-26934X" target="_blank" >GX19-26934X: Neuronové reprezentace v multimodálním a mnohojazyčném modelování</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing
ISBN
978-1-954085-52-7
ISSN
—
e-ISSN
—
Počet stran výsledku
15
Strana od-do
4019-4033
Název nakladatele
Association for Computational Linguistics
Místo vydání
Stroudsburg, PA, USA
Místo konání akce
Online
Datum konání akce
2. 8. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—