Team ReadMe at CMCL 2021 Shared Task: Predicting Human Reading Patterns by Traditional Oculomotor Control Models and Machine Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10440976" target="_blank" >RIV/00216208:11320/21:10440976 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Team ReadMe at CMCL 2021 Shared Task: Predicting Human Reading Patterns by Traditional Oculomotor Control Models and Machine Learning
Popis výsledku v původním jazyce
This system description paper describes our participation in CMCL 2021 shared task on predicting human reading patterns. Our focus in this study is making use of well-known, traditional oculomotor control models and machine learning systems. We present experiments with a traditional oculomotor control model (the EZ Reader) and two machine learning models (a linear regression model and a recurrent network model), as well as combining the two different models. In all experiments we test effects of features well-known in the literature for predicting reading patterns, such as frequency, word length and word predictability. Our experiments support the earlier findings that such features are useful when combined. Furthermore, we show that although machine learning models perform better in comparison to traditional models, combination of both gives a consistent improvement for predicting multiple eye tracking variables during reading.
Název v anglickém jazyce
Team ReadMe at CMCL 2021 Shared Task: Predicting Human Reading Patterns by Traditional Oculomotor Control Models and Machine Learning
Popis výsledku anglicky
This system description paper describes our participation in CMCL 2021 shared task on predicting human reading patterns. Our focus in this study is making use of well-known, traditional oculomotor control models and machine learning systems. We present experiments with a traditional oculomotor control model (the EZ Reader) and two machine learning models (a linear regression model and a recurrent network model), as well as combining the two different models. In all experiments we test effects of features well-known in the literature for predicting reading patterns, such as frequency, word length and word predictability. Our experiments support the earlier findings that such features are useful when combined. Furthermore, we show that although machine learning models perform better in comparison to traditional models, combination of both gives a consistent improvement for predicting multiple eye tracking variables during reading.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
CMCL 2021 - Workshop on Cognitive Modeling and Computational Linguistics, Proceedings
ISBN
978-1-954085-35-0
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
134-140
Název nakladatele
Association for Computational Linguistics
Místo vydání
Stroudsburg
Místo konání akce
online
Datum konání akce
10. 6. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—