Bilinear Fourier multipliers and the rate of decay of their derivatives
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10441240" target="_blank" >RIV/00216208:11320/21:10441240 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=SxnG0pPL0q" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=SxnG0pPL0q</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jat.2020.105485" target="_blank" >10.1016/j.jat.2020.105485</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bilinear Fourier multipliers and the rate of decay of their derivatives
Popis výsledku v původním jazyce
We investigate two types of boundedness criteria for bilinear Fourier multiplier operators with symbols with bounded partial derivatives of all (or sufficiently many) orders. Theorems of the first type explicitly prescribe only a certain rate of decay of the symbol itself while theorems of the second type require, in addition, the same rate of decay of all derivatives of the symbol. We show that even though these two types of bilinear multiplier theorems are closely related, there are some fundamental differences between them which arise in limiting cases. Also, since theorems of the latter type have so far been studied mainly in connection with the more general class of bilinear pseudodifferential operators, we revisit them in the special case of bilinear Fourier multipliers, providing also some improvements of the existing results in this setting. (C) 2020 Elsevier Inc. All rights reserved.
Název v anglickém jazyce
Bilinear Fourier multipliers and the rate of decay of their derivatives
Popis výsledku anglicky
We investigate two types of boundedness criteria for bilinear Fourier multiplier operators with symbols with bounded partial derivatives of all (or sufficiently many) orders. Theorems of the first type explicitly prescribe only a certain rate of decay of the symbol itself while theorems of the second type require, in addition, the same rate of decay of all derivatives of the symbol. We show that even though these two types of bilinear multiplier theorems are closely related, there are some fundamental differences between them which arise in limiting cases. Also, since theorems of the latter type have so far been studied mainly in connection with the more general class of bilinear pseudodifferential operators, we revisit them in the special case of bilinear Fourier multipliers, providing also some improvements of the existing results in this setting. (C) 2020 Elsevier Inc. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Approximation Theory
ISSN
0021-9045
e-ISSN
—
Svazek periodika
261
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
25
Strana od-do
105485
Kód UT WoS článku
000603475000001
EID výsledku v databázi Scopus
2-s2.0-85092228092