Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Bilinear Fourier multipliers and the rate of decay of their derivatives

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10441240" target="_blank" >RIV/00216208:11320/21:10441240 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=SxnG0pPL0q" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=SxnG0pPL0q</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jat.2020.105485" target="_blank" >10.1016/j.jat.2020.105485</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Bilinear Fourier multipliers and the rate of decay of their derivatives

  • Popis výsledku v původním jazyce

    We investigate two types of boundedness criteria for bilinear Fourier multiplier operators with symbols with bounded partial derivatives of all (or sufficiently many) orders. Theorems of the first type explicitly prescribe only a certain rate of decay of the symbol itself while theorems of the second type require, in addition, the same rate of decay of all derivatives of the symbol. We show that even though these two types of bilinear multiplier theorems are closely related, there are some fundamental differences between them which arise in limiting cases. Also, since theorems of the latter type have so far been studied mainly in connection with the more general class of bilinear pseudodifferential operators, we revisit them in the special case of bilinear Fourier multipliers, providing also some improvements of the existing results in this setting. (C) 2020 Elsevier Inc. All rights reserved.

  • Název v anglickém jazyce

    Bilinear Fourier multipliers and the rate of decay of their derivatives

  • Popis výsledku anglicky

    We investigate two types of boundedness criteria for bilinear Fourier multiplier operators with symbols with bounded partial derivatives of all (or sufficiently many) orders. Theorems of the first type explicitly prescribe only a certain rate of decay of the symbol itself while theorems of the second type require, in addition, the same rate of decay of all derivatives of the symbol. We show that even though these two types of bilinear multiplier theorems are closely related, there are some fundamental differences between them which arise in limiting cases. Also, since theorems of the latter type have so far been studied mainly in connection with the more general class of bilinear pseudodifferential operators, we revisit them in the special case of bilinear Fourier multipliers, providing also some improvements of the existing results in this setting. (C) 2020 Elsevier Inc. All rights reserved.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Approximation Theory

  • ISSN

    0021-9045

  • e-ISSN

  • Svazek periodika

    261

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    25

  • Strana od-do

    105485

  • Kód UT WoS článku

    000603475000001

  • EID výsledku v databázi Scopus

    2-s2.0-85092228092