Data-Driven Annotation of Textual Process Descriptions Based on Formal Meaning Representations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10441597" target="_blank" >RIV/00216208:11320/21:10441597 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-030-79382-1_5" target="_blank" >https://doi.org/10.1007/978-3-030-79382-1_5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-79382-1_5" target="_blank" >10.1007/978-3-030-79382-1_5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Data-Driven Annotation of Textual Process Descriptions Based on Formal Meaning Representations
Popis výsledku v původním jazyce
Business process management encompasses a variety of tasks that can be solved system-aided but usually require formal process representations, i.e. process models. However, it requires a significant effort to learn a formal process modeling language like, for instance, BPMN. Among others, this is one reason why companies often still stick to informal textual process descriptions. However, in contrast to formal models, information from natural language text usually cannot be automatically processed by algorithms. Hence, recent research also focuses on annotated textual process descriptions to make text machine processable. While still human-readable, they additionally contain annotations following a formal scheme. Thus, they also enable automated processing by, for instance, formal reasoning and simulation. State-of-the-art techniques for automatically annotating textual process descriptions are either based on hand-crafted rule sets or artificial neural networks. Maintaining complex rule sets requires a significant manual effort and the approaches using neural networks suffer from rather low result quality. In this paper we present an approach based on Semantic Parsing and Graph Convolutional Networks that avoids manually defined rules and provides significantly better results than existing techniques based on neural networks. A comprehensive evaluation using multiple data sets from both academia and industry shows encouraging results and differentiates between several applied text features.
Název v anglickém jazyce
Data-Driven Annotation of Textual Process Descriptions Based on Formal Meaning Representations
Popis výsledku anglicky
Business process management encompasses a variety of tasks that can be solved system-aided but usually require formal process representations, i.e. process models. However, it requires a significant effort to learn a formal process modeling language like, for instance, BPMN. Among others, this is one reason why companies often still stick to informal textual process descriptions. However, in contrast to formal models, information from natural language text usually cannot be automatically processed by algorithms. Hence, recent research also focuses on annotated textual process descriptions to make text machine processable. While still human-readable, they additionally contain annotations following a formal scheme. Thus, they also enable automated processing by, for instance, formal reasoning and simulation. State-of-the-art techniques for automatically annotating textual process descriptions are either based on hand-crafted rule sets or artificial neural networks. Maintaining complex rule sets requires a significant manual effort and the approaches using neural networks suffer from rather low result quality. In this paper we present an approach based on Semantic Parsing and Graph Convolutional Networks that avoids manually defined rules and provides significantly better results than existing techniques based on neural networks. A comprehensive evaluation using multiple data sets from both academia and industry shows encouraging results and differentiates between several applied text features.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ADVANCED INFORMATION SYSTEMS ENGINEERING (CAISE 2021)
ISBN
978-3-030-79381-4
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
16
Strana od-do
75-90
Název nakladatele
SPRINGER INTERNATIONAL PUBLISHING AG
Místo vydání
CHAM
Místo konání akce
Melbourne
Datum konání akce
28. 6. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000716947800005