Improving fake news classification using dependency grammar
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10441615" target="_blank" >RIV/00216208:11320/21:10441615 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=X-VZP0.Gdh" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=X-VZP0.Gdh</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1371/journal.pone.0256940" target="_blank" >10.1371/journal.pone.0256940</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Improving fake news classification using dependency grammar
Popis výsledku v původním jazyce
Fake news is a complex problem that leads to different approaches used to identify them. In our paper, we focus on identifying fake news using its content. The used dataset containing fake and real news was pre-processed using syntactic analysis. Dependency grammar methods were used for the sentences of the dataset and based on them the importance of each word within the sentence was determined. This information about the importance of words in sentences was utilized to create the input vectors for classifications. The paper aims to find out whether it is possible to use the dependency grammar to improve the classification of fake news. We compared these methods with the TfIdf method. The results show that it is possible to use the dependency grammar information with acceptable accuracy for the classification of fake news. An important finding is that the dependency grammar can improve existing techniques. We have improved the traditional TfIdf technique in our experiment.
Název v anglickém jazyce
Improving fake news classification using dependency grammar
Popis výsledku anglicky
Fake news is a complex problem that leads to different approaches used to identify them. In our paper, we focus on identifying fake news using its content. The used dataset containing fake and real news was pre-processed using syntactic analysis. Dependency grammar methods were used for the sentences of the dataset and based on them the importance of each word within the sentence was determined. This information about the importance of words in sentences was utilized to create the input vectors for classifications. The paper aims to find out whether it is possible to use the dependency grammar to improve the classification of fake news. We compared these methods with the TfIdf method. The results show that it is possible to use the dependency grammar information with acceptable accuracy for the classification of fake news. An important finding is that the dependency grammar can improve existing techniques. We have improved the traditional TfIdf technique in our experiment.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PLoS One
ISSN
1932-6203
e-ISSN
—
Svazek periodika
16
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
22
Strana od-do
e0256940
Kód UT WoS článku
000707052100010
EID výsledku v databázi Scopus
2-s2.0-85114874879