Comparison of fake and real news based on morphological analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F20%3A39916682" target="_blank" >RIV/00216275:25410/20:39916682 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1877050920312394" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1877050920312394</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.procs.2020.04.247" target="_blank" >10.1016/j.procs.2020.04.247</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparison of fake and real news based on morphological analysis
Popis výsledku v původním jazyce
Easy access to information results in the phenomenon of false news spreading intentionally through social networks to manipulate people's opinions. Fake news detection has recently attracted growing interest from the general public and researchers. The paper deals with the morphological analysis of two datasets containing 28 870 news articles. The results were verified using the third dataset consisting of 402 news articles. The analysis of the datasets was carried out using lemmatization and POS tagging. The morphological analysis as a process of classifying the words into grammatical-semantic classes and assigning grammatical categories to these words. Individual words from articles were annotated and statistically significant differences were examined between the classes found in fake and real news articles. The results of the analysis show that statistically significant differences are mainly in the verbs and nouns word classes. Finding statistically significant differences in individual categories of word classes is an important piece of information for the future fake news classifier in terms of selecting appropriate variables for the classification.
Název v anglickém jazyce
Comparison of fake and real news based on morphological analysis
Popis výsledku anglicky
Easy access to information results in the phenomenon of false news spreading intentionally through social networks to manipulate people's opinions. Fake news detection has recently attracted growing interest from the general public and researchers. The paper deals with the morphological analysis of two datasets containing 28 870 news articles. The results were verified using the third dataset consisting of 402 news articles. The analysis of the datasets was carried out using lemmatization and POS tagging. The morphological analysis as a process of classifying the words into grammatical-semantic classes and assigning grammatical categories to these words. Individual words from articles were annotated and statistically significant differences were examined between the classes found in fake and real news articles. The results of the analysis show that statistically significant differences are mainly in the verbs and nouns word classes. Finding statistically significant differences in individual categories of word classes is an important piece of information for the future fake news classifier in terms of selecting appropriate variables for the classification.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Procedia Computer Science : Third International Conference on Computing and Network Communications (CoCoNet'19)
ISBN
—
ISSN
1877-0509
e-ISSN
—
Počet stran výsledku
9
Strana od-do
2285-2293
Název nakladatele
Elsevier Science BV
Místo vydání
Amsterdam
Místo konání akce
Trivadrum
Datum konání akce
18. 12. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—