Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Lexical data mining-based approach for the self-enrichment of LMF standardized dictionaries: Case of the syntactico-semantic knowledge

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10441625" target="_blank" >RIV/00216208:11320/21:10441625 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Itcfb.rlbg" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Itcfb.rlbg</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/cpe.6312" target="_blank" >10.1002/cpe.6312</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Lexical data mining-based approach for the self-enrichment of LMF standardized dictionaries: Case of the syntactico-semantic knowledge

  • Popis výsledku v původním jazyce

    The LMF ISO standard provides a large cover of lexical knowledge using a fine structure. However, like most of the electronic dictionaries, the available normalized LMF dictionaries comprise only basic morpho-syntactic and semantic knowledge, such as the meanings of lexical entries through the definitions and the associated examples, and sometimes the indication of the synonyms and antonyms. Other sophisticated knowledge, such as the syntactic behaviors, semantic classes and syntactico-semantic links, which are scarce, requires a high expertise and its adding to dictionaries is expensive. In fact in this paper, we propose an approach of lexical data mining of the widely available textual content associated with the meanings, notably in the normalized LMF dictionaries, in order to perform the self-enrichment of these dictionaries. First, we contribute to the enrichment of the syntactic behaviors by linking them to the suitable meanings. Second, we focus on the enrichment of the meanings of LMF lexical entries with semantic classes based on the Gaston Gross semantic classification. Finally, we establish the syntactico-semantic links based on the results of the syntactic and semantic enrichment processes. The proposed approach has been consolidated by an experimentation carried out on an available normalized LMF dictionary for Arabic language.

  • Název v anglickém jazyce

    Lexical data mining-based approach for the self-enrichment of LMF standardized dictionaries: Case of the syntactico-semantic knowledge

  • Popis výsledku anglicky

    The LMF ISO standard provides a large cover of lexical knowledge using a fine structure. However, like most of the electronic dictionaries, the available normalized LMF dictionaries comprise only basic morpho-syntactic and semantic knowledge, such as the meanings of lexical entries through the definitions and the associated examples, and sometimes the indication of the synonyms and antonyms. Other sophisticated knowledge, such as the syntactic behaviors, semantic classes and syntactico-semantic links, which are scarce, requires a high expertise and its adding to dictionaries is expensive. In fact in this paper, we propose an approach of lexical data mining of the widely available textual content associated with the meanings, notably in the normalized LMF dictionaries, in order to perform the self-enrichment of these dictionaries. First, we contribute to the enrichment of the syntactic behaviors by linking them to the suitable meanings. Second, we focus on the enrichment of the meanings of LMF lexical entries with semantic classes based on the Gaston Gross semantic classification. Finally, we establish the syntactico-semantic links based on the results of the syntactic and semantic enrichment processes. The proposed approach has been consolidated by an experimentation carried out on an available normalized LMF dictionary for Arabic language.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Concurrency Computation Practice and Experience

  • ISSN

    1532-0626

  • e-ISSN

    1532-0634

  • Svazek periodika

    33

  • Číslo periodika v rámci svazku

    17

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    32

  • Strana od-do

    e6312

  • Kód UT WoS článku

    000640935900001

  • EID výsledku v databázi Scopus

    2-s2.0-85104407123