Review of Temporal Reasoning in the Clinical Domain for Timeline Extraction: Where we are and where we need to be
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10441638" target="_blank" >RIV/00216208:11320/21:10441638 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=N0GLdkF3-q" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=N0GLdkF3-q</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jbi.2021.103784" target="_blank" >10.1016/j.jbi.2021.103784</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Review of Temporal Reasoning in the Clinical Domain for Timeline Extraction: Where we are and where we need to be
Popis výsledku v původním jazyce
Understanding a patient's medical history, such as how long symptoms last or when a procedure was performed, is vital to diagnosing problems and providing good care. Frequently, important information regarding a patient's medical timeline is buried in their Electronic Health Record (EHR) in the form of unstructured clinical notes. This results in care providers spending time reading notes in a patient's record in order to become familiar with their condition prior to developing a diagnosis or treatment plan. Valuable time could be saved if this information was readily accessible for searching and visualization for fast comprehension by the medical team. Clinical Natural Language Processing (NLP) is an area of research that aims to build computational methods to automatically extract medically relevant information from unstructured clinical texts. A key component of Clinical NLP is Temporal Reasoning, as understanding a patient's medical history relies heavily on the ability to identify, assimilate, and reason over temporal information. In this work, we review the current state of Temporal Reasoning in the clinical domain with respect to Clinical Timeline Extraction. While much progress has been made, the current state-of-the-art still has a ways to go before practical application in the clinical setting will be possible. Areas such as handling relative and implicit temporal expressions, both in normalization and in identifying temporal relationships, improving co-reference resolution, and building inter-operable timeline extraction tools that can integrate multiple types of data are in need of new and innovative solutions to improve performance on clinical data.
Název v anglickém jazyce
Review of Temporal Reasoning in the Clinical Domain for Timeline Extraction: Where we are and where we need to be
Popis výsledku anglicky
Understanding a patient's medical history, such as how long symptoms last or when a procedure was performed, is vital to diagnosing problems and providing good care. Frequently, important information regarding a patient's medical timeline is buried in their Electronic Health Record (EHR) in the form of unstructured clinical notes. This results in care providers spending time reading notes in a patient's record in order to become familiar with their condition prior to developing a diagnosis or treatment plan. Valuable time could be saved if this information was readily accessible for searching and visualization for fast comprehension by the medical team. Clinical Natural Language Processing (NLP) is an area of research that aims to build computational methods to automatically extract medically relevant information from unstructured clinical texts. A key component of Clinical NLP is Temporal Reasoning, as understanding a patient's medical history relies heavily on the ability to identify, assimilate, and reason over temporal information. In this work, we review the current state of Temporal Reasoning in the clinical domain with respect to Clinical Timeline Extraction. While much progress has been made, the current state-of-the-art still has a ways to go before practical application in the clinical setting will be possible. Areas such as handling relative and implicit temporal expressions, both in normalization and in identifying temporal relationships, improving co-reference resolution, and building inter-operable timeline extraction tools that can integrate multiple types of data are in need of new and innovative solutions to improve performance on clinical data.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30304 - Public and environmental health
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Biomedical Informatics
ISSN
1532-0464
e-ISSN
1532-0480
Svazek periodika
118
Číslo periodika v rámci svazku
červenec 2021
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
103784
Kód UT WoS článku
000663600500001
EID výsledku v databázi Scopus
2-s2.0-85105262329