Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Benchmarking pre-trained language models for multilingual NER: TraSpaS at the BSNLP2021 shared task

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10441730" target="_blank" >RIV/00216208:11320/21:10441730 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Benchmarking pre-trained language models for multilingual NER: TraSpaS at the BSNLP2021 shared task

  • Popis výsledku v původním jazyce

    In this paper we describe TraSpaS, a submission to the third shared task on named entity recognition hosted as part of the Balto-Slavic Natural Language Processing (BSNLP) Workshop. In it we evaluate various pre-trained language models on the NER task using three open-source NLP toolkits: character level language model with Stanza, language-specific BERT-style models with SpaCy and Adapter-enabled XLM-R with Trankit. Our results show that the Trankit-based models outperformed those based on the other two toolkits, even when trained on smaller amounts of data. Our code is available at https://github.com/NaiveNeuron/slavner-2021.

  • Název v anglickém jazyce

    Benchmarking pre-trained language models for multilingual NER: TraSpaS at the BSNLP2021 shared task

  • Popis výsledku anglicky

    In this paper we describe TraSpaS, a submission to the third shared task on named entity recognition hosted as part of the Balto-Slavic Natural Language Processing (BSNLP) Workshop. In it we evaluate various pre-trained language models on the NER task using three open-source NLP toolkits: character level language model with Stanza, language-specific BERT-style models with SpaCy and Adapter-enabled XLM-R with Trankit. Our results show that the Trankit-based models outperformed those based on the other two toolkits, even when trained on smaller amounts of data. Our code is available at https://github.com/NaiveNeuron/slavner-2021.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 8th BSNLP Workshop on Balto-Slavic Natural Language Processing, BSNLP 2021 - Co-located with the 16th European Chapter of the Association for Computational Linguistics, EACL 2021

  • ISBN

    978-1-954085-14-5

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

    105-114

  • Název nakladatele

    Association for Computational Linguistics

  • Místo vydání

    Stroudsburg

  • Místo konání akce

    Kyjev

  • Datum konání akce

    20. 4. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku