Wordup! At vaxxstance 2021: Combining contextual information with textual and dependency-based syntactic features for stance detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10441777" target="_blank" >RIV/00216208:11320/21:10441777 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Wordup! At vaxxstance 2021: Combining contextual information with textual and dependency-based syntactic features for stance detection
Popis výsledku v původním jazyce
In this paper we describe the participation of theWordUp! team in the VaxxStance shared task at IberLEF 2021. The goal of the competition is to determine the author's stance from tweets written both in Spanish and Basque on the topic of the Antivaxxers movement. Our approach, in the four different tracks proposed, combines the Logistic Regression classifier with diverse groups of features: Stylistic, tweet-based, user-based, lexicon-based, dependency-based, and network-based. The outcomes of our experiments are in line with state-of-the-art results on other languages, proving the efficacy of combining methods derived from NLP and Network Science for detecting stance in Spanish and Basque.
Název v anglickém jazyce
Wordup! At vaxxstance 2021: Combining contextual information with textual and dependency-based syntactic features for stance detection
Popis výsledku anglicky
In this paper we describe the participation of theWordUp! team in the VaxxStance shared task at IberLEF 2021. The goal of the competition is to determine the author's stance from tweets written both in Spanish and Basque on the topic of the Antivaxxers movement. Our approach, in the four different tracks proposed, combines the Logistic Regression classifier with diverse groups of features: Stylistic, tweet-based, user-based, lexicon-based, dependency-based, and network-based. The outcomes of our experiments are in line with state-of-the-art results on other languages, proving the efficacy of combining methods derived from NLP and Network Science for detecting stance in Spanish and Basque.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
CEUR Workshop Proceedings
ISBN
—
ISSN
1613-0073
e-ISSN
—
Počet stran výsledku
23
Strana od-do
210-232
Název nakladatele
CEUR-WS
Místo vydání
Aachen
Místo konání akce
Málaga
Datum konání akce
21. 9. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—