Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

PPT: Parsimonious Parser Transfer for Unsupervised Cross-Lingual Adaptation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10442223" target="_blank" >RIV/00216208:11320/21:10442223 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    PPT: Parsimonious Parser Transfer for Unsupervised Cross-Lingual Adaptation

  • Popis výsledku v původním jazyce

    Cross-lingual transfer is a leading technique for parsing low-resource languages in the absence of explicit supervision. Simple &apos;direct transfer&apos; of a learned model based on a multilingual input encoding has provided a strong benchmark. This paper presents a method for unsupervised cross-lingual transfer that improves over direct transfer systems by using their output as implicit supervision as part of self-training on unlabelled text in the target language. The method assumes minimal resources and provides maximal flexibility by (a) accepting any pre-trained arc-factored dependency parser; (b) assuming no access to source language data; (c) supporting both projective and non-projective parsing; and (d) supporting multi-source transfer. With English as the source language, we show significant improvements over state-of-the-art transfer models on both distant and nearby languages, despite our conceptually simpler approach. We provide analyses of the choice of source languages for multi-source transfer, and the advantage of non-projective parsing. Our code is available online.

  • Název v anglickém jazyce

    PPT: Parsimonious Parser Transfer for Unsupervised Cross-Lingual Adaptation

  • Popis výsledku anglicky

    Cross-lingual transfer is a leading technique for parsing low-resource languages in the absence of explicit supervision. Simple &apos;direct transfer&apos; of a learned model based on a multilingual input encoding has provided a strong benchmark. This paper presents a method for unsupervised cross-lingual transfer that improves over direct transfer systems by using their output as implicit supervision as part of self-training on unlabelled text in the target language. The method assumes minimal resources and provides maximal flexibility by (a) accepting any pre-trained arc-factored dependency parser; (b) assuming no access to source language data; (c) supporting both projective and non-projective parsing; and (d) supporting multi-source transfer. With English as the source language, we show significant improvements over state-of-the-art transfer models on both distant and nearby languages, despite our conceptually simpler approach. We provide analyses of the choice of source languages for multi-source transfer, and the advantage of non-projective parsing. Our code is available online.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

  • ISBN

    978-1-954085-02-2

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    12

  • Strana od-do

    2907-2918

  • Název nakladatele

    Association for Computational Linguistics

  • Místo vydání

    Stroudsburg

  • Místo konání akce

    online

  • Datum konání akce

    19. 4. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku