Cross-Lingual Universal Dependency Parsing Only From One Monolingual Treebank
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3AA4HWA464" target="_blank" >RIV/00216208:11320/23:A4HWA464 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85164376341&doi=10.1109%2fTPAMI.2023.3291388&partnerID=40&md5=a1c963e57fa015f3459b548af078abc5" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85164376341&doi=10.1109%2fTPAMI.2023.3291388&partnerID=40&md5=a1c963e57fa015f3459b548af078abc5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/tpami.2023.3291388" target="_blank" >10.1109/tpami.2023.3291388</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cross-Lingual Universal Dependency Parsing Only From One Monolingual Treebank
Popis výsledku v původním jazyce
"Syntactic parsing is a highly linguistic processing task whose parser requires training on treebanks from the expensive human annotation. As it is unlikely to obtain a treebank for every human language, in this work, we propose an effective cross-lingual UD parsing framework for transferring parser from only one source monolingual treebank to any other target languages without treebank available. To reach satisfactory parsing accuracy among quite different languages, we introduce two language modeling tasks into the training process of dependency parsing as multi-tasking. Assuming only unlabeled data from target languages plus the source treebank can be exploited together, we adopt a self-training strategy for further performance improvement in terms of our multi-task framework. Our proposed cross-lingual parsers are implemented for English, Chinese, and 29 UD treebanks. The empirical study shows that our cross-lingual parsers yield promising results for all target languages, approaching the parser performance which is trained in its own target treebank. © 1979-2012 IEEE."
Název v anglickém jazyce
Cross-Lingual Universal Dependency Parsing Only From One Monolingual Treebank
Popis výsledku anglicky
"Syntactic parsing is a highly linguistic processing task whose parser requires training on treebanks from the expensive human annotation. As it is unlikely to obtain a treebank for every human language, in this work, we propose an effective cross-lingual UD parsing framework for transferring parser from only one source monolingual treebank to any other target languages without treebank available. To reach satisfactory parsing accuracy among quite different languages, we introduce two language modeling tasks into the training process of dependency parsing as multi-tasking. Assuming only unlabeled data from target languages plus the source treebank can be exploited together, we adopt a self-training strategy for further performance improvement in terms of our multi-task framework. Our proposed cross-lingual parsers are implemented for English, Chinese, and 29 UD treebanks. The empirical study shows that our cross-lingual parsers yield promising results for all target languages, approaching the parser performance which is trained in its own target treebank. © 1979-2012 IEEE."
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
"IEEE Transactions on Pattern Analysis and Machine Intelligence"
ISSN
0162-8828
e-ISSN
—
Svazek periodika
45
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
13393-13407
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85164376341