What Taggers Fail to Learn, Parsers Need the Most
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10442290" target="_blank" >RIV/00216208:11320/21:10442290 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
What Taggers Fail to Learn, Parsers Need the Most
Popis výsledku v původním jazyce
We present an error analysis of neural UPOS taggers to evaluate why using gold tags has such a large positive contribution to parsing performance while using predicted UPOS either harms performance or offers a negligible improvement. We also evaluate what neural dependency parsers implicitly learn about word types and how this relates to the errors taggers make, to explain the minimal impact using predicted tags has on parsers. We then mask UPOS tags based on errors made by taggers to tease away the contribution of UPOS tags that taggers succeed and fail to classify correctly and the impact of tagging errors.
Název v anglickém jazyce
What Taggers Fail to Learn, Parsers Need the Most
Popis výsledku anglicky
We present an error analysis of neural UPOS taggers to evaluate why using gold tags has such a large positive contribution to parsing performance while using predicted UPOS either harms performance or offers a negligible improvement. We also evaluate what neural dependency parsers implicitly learn about word types and how this relates to the errors taggers make, to explain the minimal impact using predicted tags has on parsers. We then mask UPOS tags based on errors made by taggers to tease away the contribution of UPOS tags that taggers succeed and fail to classify correctly and the impact of tagging errors.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa)
ISBN
978-91-7929-614-8
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
309-314
Název nakladatele
Linköping University Electronic Press
Místo vydání
Linköping
Místo konání akce
Reykjavik
Datum konání akce
31. 5. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—