Universum parametric-margin ν-support vector machine for classification using the difference of convex functions algorithm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10451766" target="_blank" >RIV/00216208:11320/21:10451766 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rti~2WpfKr" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rti~2WpfKr</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10489-021-02402-6" target="_blank" >10.1007/s10489-021-02402-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Universum parametric-margin ν-support vector machine for classification using the difference of convex functions algorithm
Popis výsledku v původním jazyce
Universum data that do not belong to any class of a classification problem can be exploited to utilize prior knowledge to improve generalization performance. In this paper, we design a novel parametric ν-support vector machine with universum data (UPar-ν-SVM). Unlabeled samples can be integrated into supervised learning by means of UPar-ν-SVM. We propose a fast method to solve the suggested problem of UPar-ν-SVM. The primal problem of UPar-ν-SVM, which is a nonconvex optimization problem, is transformed into an unconstrained optimization problem so that the objective function can be treated as a difference of two convex functions (DC). To solve this unconstrained problem, a boosted difference of convex functions algorithm (BDCA) based on a generalized Newton method is suggested (named DC-UPar-ν-SVM). We examined our approach on UCI benchmark data sets, NDC data sets, a handwritten digit recognition data set, and a landmine detection data set. The experimental results confirmed the effectiveness and superiority of the proposed method for solving classification problems in comparison with other methods. (C) 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Název v anglickém jazyce
Universum parametric-margin ν-support vector machine for classification using the difference of convex functions algorithm
Popis výsledku anglicky
Universum data that do not belong to any class of a classification problem can be exploited to utilize prior knowledge to improve generalization performance. In this paper, we design a novel parametric ν-support vector machine with universum data (UPar-ν-SVM). Unlabeled samples can be integrated into supervised learning by means of UPar-ν-SVM. We propose a fast method to solve the suggested problem of UPar-ν-SVM. The primal problem of UPar-ν-SVM, which is a nonconvex optimization problem, is transformed into an unconstrained optimization problem so that the objective function can be treated as a difference of two convex functions (DC). To solve this unconstrained problem, a boosted difference of convex functions algorithm (BDCA) based on a generalized Newton method is suggested (named DC-UPar-ν-SVM). We examined our approach on UCI benchmark data sets, NDC data sets, a handwritten digit recognition data set, and a landmine detection data set. The experimental results confirmed the effectiveness and superiority of the proposed method for solving classification problems in comparison with other methods. (C) 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50201 - Economic Theory
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-04735S" target="_blank" >GA18-04735S: Nové přístupy pro relaxační a aproximační techniky v deterministické globální optimalizaci</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Intelligence
ISSN
0924-669X
e-ISSN
—
Svazek periodika
52
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
21
Strana od-do
2634-2654
Kód UT WoS článku
000662820100004
EID výsledku v databázi Scopus
2-s2.0-85108106202