Universum parametric ? -support vector regression for binary classification problems with its applications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F23%3A43897680" target="_blank" >RIV/44555601:13440/23:43897680 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s10479-023-05369-4" target="_blank" >https://link.springer.com/article/10.1007/s10479-023-05369-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10479-023-05369-4" target="_blank" >10.1007/s10479-023-05369-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Universum parametric ? -support vector regression for binary classification problems with its applications
Popis výsledku v původním jazyce
Universum data sets, a collection of data sets that do not belong to any specific class in a classification problem, give previous information about data in the mathematical problem under consideration to enhance the classifiers? generalization performance. Recently, some researchers have integrated Universum data into the existing models to propose new models which result in improved classification performance. Inspired by these Universum models, an efficient parametric ? -support vector regression with Universum data (U Par- ? -SVR) is proposed in this work. This method, which finds two non-parallel hyperplanes by solving one optimization problem and considers heteroscedastic noise, overcomes some common disadvantages of the previous methods. The U Par- ? -SVR includes unlabeled samples that don?t belong to any class in the training process, which results in a quadratic programming problem. Two approaches are proposed to solve this problem. The first approach derives the dual formulation using the Lagrangian function and KKT conditions. Furthermore, a least squares parametric ? -support vector regression with Universum data (named LS- U Par- ? -SVR) is suggested to further increase the generalization performance. The LS- U Par- ? -SVR solves a single system of linear equations, instead of addressing a quadratic programming problem in the dual formulation. Numerical experiments on artificial, UCI, credit card, NDC, and handwritten digit recognition data sets show that the suggested Universum model and its solving methodologies improve prediction accuracy.
Název v anglickém jazyce
Universum parametric ? -support vector regression for binary classification problems with its applications
Popis výsledku anglicky
Universum data sets, a collection of data sets that do not belong to any specific class in a classification problem, give previous information about data in the mathematical problem under consideration to enhance the classifiers? generalization performance. Recently, some researchers have integrated Universum data into the existing models to propose new models which result in improved classification performance. Inspired by these Universum models, an efficient parametric ? -support vector regression with Universum data (U Par- ? -SVR) is proposed in this work. This method, which finds two non-parallel hyperplanes by solving one optimization problem and considers heteroscedastic noise, overcomes some common disadvantages of the previous methods. The U Par- ? -SVR includes unlabeled samples that don?t belong to any class in the training process, which results in a quadratic programming problem. Two approaches are proposed to solve this problem. The first approach derives the dual formulation using the Lagrangian function and KKT conditions. Furthermore, a least squares parametric ? -support vector regression with Universum data (named LS- U Par- ? -SVR) is suggested to further increase the generalization performance. The LS- U Par- ? -SVR solves a single system of linear equations, instead of addressing a quadratic programming problem in the dual formulation. Numerical experiments on artificial, UCI, credit card, NDC, and handwritten digit recognition data sets show that the suggested Universum model and its solving methodologies improve prediction accuracy.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Annals of Operations Research
ISSN
0254-5330
e-ISSN
—
Svazek periodika
2023
Číslo periodika v rámci svazku
"necislovano"
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
45
Strana od-do
"nestrankovano"
Kód UT WoS článku
000995549700002
EID výsledku v databázi Scopus
2-s2.0-85160323519