Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Universum parametric ? -support vector regression for binary classification problems with its applications

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F23%3A43897680" target="_blank" >RIV/44555601:13440/23:43897680 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s10479-023-05369-4" target="_blank" >https://link.springer.com/article/10.1007/s10479-023-05369-4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10479-023-05369-4" target="_blank" >10.1007/s10479-023-05369-4</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Universum parametric ? -support vector regression for binary classification problems with its applications

  • Popis výsledku v původním jazyce

    Universum data sets, a collection of data sets that do not belong to any specific class in a classification problem, give previous information about data in the mathematical problem under consideration to enhance the classifiers? generalization performance. Recently, some researchers have integrated Universum data into the existing models to propose new models which result in improved classification performance. Inspired by these Universum models, an efficient parametric ? -support vector regression with Universum data (U Par- ? -SVR) is proposed in this work. This method, which finds two non-parallel hyperplanes by solving one optimization problem and considers heteroscedastic noise, overcomes some common disadvantages of the previous methods. The U Par- ? -SVR includes unlabeled samples that don?t belong to any class in the training process, which results in a quadratic programming problem. Two approaches are proposed to solve this problem. The first approach derives the dual formulation using the Lagrangian function and KKT conditions. Furthermore, a least squares parametric ? -support vector regression with Universum data (named LS- U Par- ? -SVR) is suggested to further increase the generalization performance. The LS- U Par- ? -SVR solves a single system of linear equations, instead of addressing a quadratic programming problem in the dual formulation. Numerical experiments on artificial, UCI, credit card, NDC, and handwritten digit recognition data sets show that the suggested Universum model and its solving methodologies improve prediction accuracy.

  • Název v anglickém jazyce

    Universum parametric ? -support vector regression for binary classification problems with its applications

  • Popis výsledku anglicky

    Universum data sets, a collection of data sets that do not belong to any specific class in a classification problem, give previous information about data in the mathematical problem under consideration to enhance the classifiers? generalization performance. Recently, some researchers have integrated Universum data into the existing models to propose new models which result in improved classification performance. Inspired by these Universum models, an efficient parametric ? -support vector regression with Universum data (U Par- ? -SVR) is proposed in this work. This method, which finds two non-parallel hyperplanes by solving one optimization problem and considers heteroscedastic noise, overcomes some common disadvantages of the previous methods. The U Par- ? -SVR includes unlabeled samples that don?t belong to any class in the training process, which results in a quadratic programming problem. Two approaches are proposed to solve this problem. The first approach derives the dual formulation using the Lagrangian function and KKT conditions. Furthermore, a least squares parametric ? -support vector regression with Universum data (named LS- U Par- ? -SVR) is suggested to further increase the generalization performance. The LS- U Par- ? -SVR solves a single system of linear equations, instead of addressing a quadratic programming problem in the dual formulation. Numerical experiments on artificial, UCI, credit card, NDC, and handwritten digit recognition data sets show that the suggested Universum model and its solving methodologies improve prediction accuracy.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Annals of Operations Research

  • ISSN

    0254-5330

  • e-ISSN

  • Svazek periodika

    2023

  • Číslo periodika v rámci svazku

    "necislovano"

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    45

  • Strana od-do

    "nestrankovano"

  • Kód UT WoS článku

    000995549700002

  • EID výsledku v databázi Scopus

    2-s2.0-85160323519