aDFS: An Almost Depth-First-Search Distributed Graph-Querying System
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10456936" target="_blank" >RIV/00216208:11320/21:10456936 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
aDFS: An Almost Depth-First-Search Distributed Graph-Querying System
Popis výsledku v původním jazyce
Graph processing is an invaluable tool for data analytics. In particular, pattern-matching queries enable flexible graph exploration and analysis, similar to what SQL provides for relational databases. Graph queries focus on following connections in the data; they are a challenging workload because even seemingly trivial queries can easily produce billions of intermediate results and irregular data access patterns. In this paper, we introduce aDFS: A distributed graphquerying system that can process practically any query fully in memory, while maintaining bounded runtime memory consumption. To achieve this behavior, aDFS relies on (i) almost depth-first (aDFS) graph exploration with some breadth-first characteristics for performance, and (ii) non-blocking dispatching of intermediate results to remote edges. We evaluate aDFS against state-of-the-art graph-querying (Neo4J and GraphFrames for Apache Spark), graph-mining (G-Miner, Fractal, and Peregrine), as well as dataflow joins (BiGJoin), and show that aDFS significantly outperforms prior work on a diverse selection of workloads.
Název v anglickém jazyce
aDFS: An Almost Depth-First-Search Distributed Graph-Querying System
Popis výsledku anglicky
Graph processing is an invaluable tool for data analytics. In particular, pattern-matching queries enable flexible graph exploration and analysis, similar to what SQL provides for relational databases. Graph queries focus on following connections in the data; they are a challenging workload because even seemingly trivial queries can easily produce billions of intermediate results and irregular data access patterns. In this paper, we introduce aDFS: A distributed graphquerying system that can process practically any query fully in memory, while maintaining bounded runtime memory consumption. To achieve this behavior, aDFS relies on (i) almost depth-first (aDFS) graph exploration with some breadth-first characteristics for performance, and (ii) non-blocking dispatching of intermediate results to remote edges. We evaluate aDFS against state-of-the-art graph-querying (Neo4J and GraphFrames for Apache Spark), graph-mining (G-Miner, Fractal, and Peregrine), as well as dataflow joins (BiGJoin), and show that aDFS significantly outperforms prior work on a diverse selection of workloads.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
PROCEEDINGS OF THE 2021 USENIX ANNUAL TECHNICAL CONFERENCE
ISBN
978-1-939133-23-6
ISSN
—
e-ISSN
—
Počet stran výsledku
16
Strana od-do
209-224
Název nakladatele
USENIX Association
Místo vydání
BERKELEY
Místo konání akce
US
Datum konání akce
14. 7. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000696708600014