The Suitability of Graph Databases for Big Data Analysis: A Benchmark
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14610%2F20%3A00115477" target="_blank" >RIV/00216224:14610/20:00115477 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scitepress.org/PublicationsDetail.aspx?ID=qc6Zz7Qsgn0=&t=1" target="_blank" >https://www.scitepress.org/PublicationsDetail.aspx?ID=qc6Zz7Qsgn0=&t=1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5220/0009350902130220" target="_blank" >10.5220/0009350902130220</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Suitability of Graph Databases for Big Data Analysis: A Benchmark
Popis výsledku v původním jazyce
Digitalization of our society brings various new digital ecosystems (e.g., Smart Cities, Smart Buildings, Smart Mobility), which rely on the collection, storage, and processing of Big Data. One of the recently popular advancements in Big Data storage and processing are the graph databases. A graph database is specialized to handle highly connected data, which can be, for instance, found in the cross-domain setting where various levels of data interconnection take place. Existing works suggest that for data with many relationships, the graph databases perform better than non-graph databases. However, it is not clear where are the borders for specific query types, for which it is still efficient to use a graph database. In this paper, we design and perform tests that examine these borders. We perform the tests in a cluster of three machines so that we explore the database behavior in Big Data scenarios concerning the query. We specifically work with Neo4j as a representative of graph databases and PostgreSQL as a representative of non-graph databases.
Název v anglickém jazyce
The Suitability of Graph Databases for Big Data Analysis: A Benchmark
Popis výsledku anglicky
Digitalization of our society brings various new digital ecosystems (e.g., Smart Cities, Smart Buildings, Smart Mobility), which rely on the collection, storage, and processing of Big Data. One of the recently popular advancements in Big Data storage and processing are the graph databases. A graph database is specialized to handle highly connected data, which can be, for instance, found in the cross-domain setting where various levels of data interconnection take place. Existing works suggest that for data with many relationships, the graph databases perform better than non-graph databases. However, it is not clear where are the borders for specific query types, for which it is still efficient to use a graph database. In this paper, we design and perform tests that examine these borders. We perform the tests in a cluster of three machines so that we explore the database behavior in Big Data scenarios concerning the query. We specifically work with Neo4j as a representative of graph databases and PostgreSQL as a representative of non-graph databases.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 5th International Conference on Internet of Things, Big Data and Security - Volume 1: IoTBDS
ISBN
9789897584268
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
213-220
Název nakladatele
SciTePress
Místo vydání
Neuveden
Místo konání akce
Prague
Datum konání akce
1. 1. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000615960700021