Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Big Data Storage and Management: Challenges and Opportunities

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10363614" target="_blank" >RIV/00216208:11320/17:10363614 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Big Data Storage and Management: Challenges and Opportunities

  • Popis výsledku v původním jazyce

    The paper is focused on today&apos;s very popular theme - Big Data. We describe and discuss its characteristics by eleven V&apos;s (Volume, Velocity, Variety, Veracity, etc.) and Big Data quality. These characteristics represent both data and process challenges. Then we continue with problems of Big Data storage and manage-ment. Principles of NoSQL databases are explained including their categorization. We also shortly describe Hadoop and MapReduce technologies as well as their inefficiency for some interactive queries and applications within the domain of large-scale graph processing and streaming data. NoSQL databases and Hadoop M/R are designed to take advantage of cloud computing architectures and allow massive computations to be run inexpensively and efficiently. The term of Big Data 1.0 was introduced for these technologies. We continue with some new ap-proaches called currently Big Data 2.0 processing systems. Particularly their four categories are introduced and discussed: General purpose Big Data Processing Systems, Big SQL Processing Systems, Big Graph Processing Systems, and Big Stream Processing Systems. Then, an attention is devoted to Big Analytics - the main application area for Big Data storage and processing. We argue that enter-prises with complex, heterogeneous environments no longer want to adopt a BI access point just for one data source (Hadoop). More heterogeneous software platforms are needed. Even Hadoop has become a multi-purpose engine for ad hoc analysis. Finally, we mention some problems with Big Data. We also remind that Big Data creates a new type of digital divide. Having access and knowledge of Big Data technologies gives companies and people a competitive edge in to-day&apos;s data driven world.

  • Název v anglickém jazyce

    Big Data Storage and Management: Challenges and Opportunities

  • Popis výsledku anglicky

    The paper is focused on today&apos;s very popular theme - Big Data. We describe and discuss its characteristics by eleven V&apos;s (Volume, Velocity, Variety, Veracity, etc.) and Big Data quality. These characteristics represent both data and process challenges. Then we continue with problems of Big Data storage and manage-ment. Principles of NoSQL databases are explained including their categorization. We also shortly describe Hadoop and MapReduce technologies as well as their inefficiency for some interactive queries and applications within the domain of large-scale graph processing and streaming data. NoSQL databases and Hadoop M/R are designed to take advantage of cloud computing architectures and allow massive computations to be run inexpensively and efficiently. The term of Big Data 1.0 was introduced for these technologies. We continue with some new ap-proaches called currently Big Data 2.0 processing systems. Particularly their four categories are introduced and discussed: General purpose Big Data Processing Systems, Big SQL Processing Systems, Big Graph Processing Systems, and Big Stream Processing Systems. Then, an attention is devoted to Big Analytics - the main application area for Big Data storage and processing. We argue that enter-prises with complex, heterogeneous environments no longer want to adopt a BI access point just for one data source (Hadoop). More heterogeneous software platforms are needed. Even Hadoop has become a multi-purpose engine for ad hoc analysis. Finally, we mention some problems with Big Data. We also remind that Big Data creates a new type of digital divide. Having access and knowledge of Big Data technologies gives companies and people a competitive edge in to-day&apos;s data driven world.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Environmental Software Systems, Computer Science for Environmental Protection

  • ISBN

    978-3-319-89934-3

  • ISSN

  • e-ISSN

    neuvedeno

  • Počet stran výsledku

    11

  • Strana od-do

    28-38

  • Název nakladatele

    SPRINGER

  • Místo vydání

    Cham, Switzerland

  • Místo konání akce

    Zadar

  • Datum konání akce

    10. 5. 2017

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku