HPSG-Inspired Joint Neural Constituent and Dependency Parsing in O(n(3)) Time Complexity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10441614" target="_blank" >RIV/00216208:11320/22:10441614 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rQMY.bNWG9" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rQMY.bNWG9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TASLP.2021.3138715" target="_blank" >10.1109/TASLP.2021.3138715</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
HPSG-Inspired Joint Neural Constituent and Dependency Parsing in O(n(3)) Time Complexity
Popis výsledku v původním jazyce
Constituent and dependency parsing, the two classic forms of syntactic parsing, have been found to benefit from joint training and decoding under a uniform formalism, inspired by Head-driven Phrase Structure Grammar (HPSG). We thus refer to this joint parsing of constituency and dependency as HPSG-like parsing. However, in HPSG-like parsing, decoding this unified grammar has a higher time complexity (O(n(3))) than decoding either form individually (O(n(3))) since more factors have to be considered during decoding. We thus propose an improved head scorer that helps achieve a novel performance-preserved parser in O(n(3)) time complexity. Furthermore, on the basis of this proposed practical HPSG-like parser, we investigated the strengths of HPSG-like parsing and explored the general method of training an HPSG-like parser from only a constituent or dependency annotations in a multilingual scenario. We thus present a more effective, more in-depth, and general work on HPSG-like parsing.
Název v anglickém jazyce
HPSG-Inspired Joint Neural Constituent and Dependency Parsing in O(n(3)) Time Complexity
Popis výsledku anglicky
Constituent and dependency parsing, the two classic forms of syntactic parsing, have been found to benefit from joint training and decoding under a uniform formalism, inspired by Head-driven Phrase Structure Grammar (HPSG). We thus refer to this joint parsing of constituency and dependency as HPSG-like parsing. However, in HPSG-like parsing, decoding this unified grammar has a higher time complexity (O(n(3))) than decoding either form individually (O(n(3))) since more factors have to be considered during decoding. We thus propose an improved head scorer that helps achieve a novel performance-preserved parser in O(n(3)) time complexity. Furthermore, on the basis of this proposed practical HPSG-like parser, we investigated the strengths of HPSG-like parsing and explored the general method of training an HPSG-like parser from only a constituent or dependency annotations in a multilingual scenario. We thus present a more effective, more in-depth, and general work on HPSG-like parsing.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE - ACM Transactions on Audio, Speech, and Language Processing
ISSN
2329-9290
e-ISSN
2329-9304
Svazek periodika
30
Číslo periodika v rámci svazku
28.12.2021
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
355-366
Kód UT WoS článku
000742717400001
EID výsledku v databázi Scopus
2-s2.0-85122302994