Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Computational fluid dynamics predicts the nanoparticle transport in gas aggregation cluster sources

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10447811" target="_blank" >RIV/00216208:11320/22:10447811 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_G7GRNA-uO" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_G7GRNA-uO</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1361-6463/ac8c4e" target="_blank" >10.1088/1361-6463/ac8c4e</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Computational fluid dynamics predicts the nanoparticle transport in gas aggregation cluster sources

  • Popis výsledku v původním jazyce

    In a typical sputter-based gas aggregation cluster source (GAS), nanoparticles (NPs) are created from supersaturated vapours of the target material. The NPs then escape from the source with the expanding gas through an exit orifice. The carrier gas flow profile is one of the most critical parameters, which strongly affects the NP losses on the walls and determines the efficiency of the NP transport to the substrate. In this work, computational fluid dynamics (CFD) simulations are performed to understand the flow of the carrier gas inside the aggregation chamber. We focus on the impact of the inlet and outlet geometry on the carrier gas flow and, therefore, on the NP transportation. Two types of GAS with either a conventional planar magnetron or a cylindrical magnetron are considered. In the planar configuration, the working gas inlet is from behind the magnetron, and the gas flows around the target towards the orifice along the system axis, which may cause some vertices. The situation is even more critical for the cylindrical magnetron, where the gas inlet position and geometry have a drastic influence on the gas flow. Brownian diffusion is found to prevail for NPs smaller than 5 nm, regardless of the gas flow. This leads to their losses on the walls. Larger NPs experience a stronger drag force from the carrier gas flow, which should exceed 10 m s(-1) to prevent loss of NPs on the walls and keep NP transport efficient. Therefore, the CFD simulations help to visualise the motion of the NPs and optimise the geometry of the GAS for future applications.

  • Název v anglickém jazyce

    Computational fluid dynamics predicts the nanoparticle transport in gas aggregation cluster sources

  • Popis výsledku anglicky

    In a typical sputter-based gas aggregation cluster source (GAS), nanoparticles (NPs) are created from supersaturated vapours of the target material. The NPs then escape from the source with the expanding gas through an exit orifice. The carrier gas flow profile is one of the most critical parameters, which strongly affects the NP losses on the walls and determines the efficiency of the NP transport to the substrate. In this work, computational fluid dynamics (CFD) simulations are performed to understand the flow of the carrier gas inside the aggregation chamber. We focus on the impact of the inlet and outlet geometry on the carrier gas flow and, therefore, on the NP transportation. Two types of GAS with either a conventional planar magnetron or a cylindrical magnetron are considered. In the planar configuration, the working gas inlet is from behind the magnetron, and the gas flows around the target towards the orifice along the system axis, which may cause some vertices. The situation is even more critical for the cylindrical magnetron, where the gas inlet position and geometry have a drastic influence on the gas flow. Brownian diffusion is found to prevail for NPs smaller than 5 nm, regardless of the gas flow. This leads to their losses on the walls. Larger NPs experience a stronger drag force from the carrier gas flow, which should exceed 10 m s(-1) to prevent loss of NPs on the walls and keep NP transport efficient. Therefore, the CFD simulations help to visualise the motion of the NPs and optimise the geometry of the GAS for future applications.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA21-12828S" target="_blank" >GA21-12828S: Plazmatem podpořená syntéza nanokapalin na bázi kapalných polymerů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Physics D - Applied Physics

  • ISSN

    0022-3727

  • e-ISSN

    1361-6463

  • Svazek periodika

    55

  • Číslo periodika v rámci svazku

    44

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    12

  • Strana od-do

    445203

  • Kód UT WoS článku

    000852039600001

  • EID výsledku v databázi Scopus

    2-s2.0-85138441701