Computational fluid dynamics predicts the nanoparticle transport in gas aggregation cluster sources
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10447811" target="_blank" >RIV/00216208:11320/22:10447811 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_G7GRNA-uO" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_G7GRNA-uO</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1361-6463/ac8c4e" target="_blank" >10.1088/1361-6463/ac8c4e</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Computational fluid dynamics predicts the nanoparticle transport in gas aggregation cluster sources
Popis výsledku v původním jazyce
In a typical sputter-based gas aggregation cluster source (GAS), nanoparticles (NPs) are created from supersaturated vapours of the target material. The NPs then escape from the source with the expanding gas through an exit orifice. The carrier gas flow profile is one of the most critical parameters, which strongly affects the NP losses on the walls and determines the efficiency of the NP transport to the substrate. In this work, computational fluid dynamics (CFD) simulations are performed to understand the flow of the carrier gas inside the aggregation chamber. We focus on the impact of the inlet and outlet geometry on the carrier gas flow and, therefore, on the NP transportation. Two types of GAS with either a conventional planar magnetron or a cylindrical magnetron are considered. In the planar configuration, the working gas inlet is from behind the magnetron, and the gas flows around the target towards the orifice along the system axis, which may cause some vertices. The situation is even more critical for the cylindrical magnetron, where the gas inlet position and geometry have a drastic influence on the gas flow. Brownian diffusion is found to prevail for NPs smaller than 5 nm, regardless of the gas flow. This leads to their losses on the walls. Larger NPs experience a stronger drag force from the carrier gas flow, which should exceed 10 m s(-1) to prevent loss of NPs on the walls and keep NP transport efficient. Therefore, the CFD simulations help to visualise the motion of the NPs and optimise the geometry of the GAS for future applications.
Název v anglickém jazyce
Computational fluid dynamics predicts the nanoparticle transport in gas aggregation cluster sources
Popis výsledku anglicky
In a typical sputter-based gas aggregation cluster source (GAS), nanoparticles (NPs) are created from supersaturated vapours of the target material. The NPs then escape from the source with the expanding gas through an exit orifice. The carrier gas flow profile is one of the most critical parameters, which strongly affects the NP losses on the walls and determines the efficiency of the NP transport to the substrate. In this work, computational fluid dynamics (CFD) simulations are performed to understand the flow of the carrier gas inside the aggregation chamber. We focus on the impact of the inlet and outlet geometry on the carrier gas flow and, therefore, on the NP transportation. Two types of GAS with either a conventional planar magnetron or a cylindrical magnetron are considered. In the planar configuration, the working gas inlet is from behind the magnetron, and the gas flows around the target towards the orifice along the system axis, which may cause some vertices. The situation is even more critical for the cylindrical magnetron, where the gas inlet position and geometry have a drastic influence on the gas flow. Brownian diffusion is found to prevail for NPs smaller than 5 nm, regardless of the gas flow. This leads to their losses on the walls. Larger NPs experience a stronger drag force from the carrier gas flow, which should exceed 10 m s(-1) to prevent loss of NPs on the walls and keep NP transport efficient. Therefore, the CFD simulations help to visualise the motion of the NPs and optimise the geometry of the GAS for future applications.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-12828S" target="_blank" >GA21-12828S: Plazmatem podpořená syntéza nanokapalin na bázi kapalných polymerů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physics D - Applied Physics
ISSN
0022-3727
e-ISSN
1361-6463
Svazek periodika
55
Číslo periodika v rámci svazku
44
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
12
Strana od-do
445203
Kód UT WoS článku
000852039600001
EID výsledku v databázi Scopus
2-s2.0-85138441701