Star Transposition Gray Codes for Multiset Permutations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10450676" target="_blank" >RIV/00216208:11320/22:10450676 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.4230/LIPIcs.STACS.2022.34" target="_blank" >https://doi.org/10.4230/LIPIcs.STACS.2022.34</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.STACS.2022.34" target="_blank" >10.4230/LIPIcs.STACS.2022.34</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Star Transposition Gray Codes for Multiset Permutations
Popis výsledku v původním jazyce
Given integers k >= 2 and a1, . . ., ak >= 1, let a := (a1, . . ., ak) and n := a1 + . . . + ak. An a-multiset permutation is a string of length n that contains exactly ai symbols i for each i = 1, . . ., k. In this work we consider the problem of exhaustively generating all a-multiset permutations by star transpositions, i.e., in each step, the first entry of the string is transposed with any other entry distinct from the first one. This is a far-ranging generalization of several known results. For example, it is known that permutations (a1 = . . . = ak = 1) can be generated by star transpositions, while combinations (k = 2) can be generated by these operations if and only if they are balanced (a1 = a2), with the positive case following from the middle levels theorem. To understand the problem in general, we introduce a parameter Delta(a):= n - 2 max{a1, . . ., ak} that allows us to distinguish three different regimes for this problem. We show that if Delta(a) < 0, then a star transposition Gray code for a-multiset permutations does not exist. We also construct such Gray codes for the case Delta(a) > 0, assuming that they exist for the case INCREMENT (a) = 0. For the case Delta(a) = 0 we present some partial positive results. Our proofs establish Hamilton-connectedness or Hamilton-laceability of the underlying flip graphs, and they answer several cases of a recent conjecture of Shen and Williams. In particular, we prove that the middle levels graph is Hamilton-laceable.
Název v anglickém jazyce
Star Transposition Gray Codes for Multiset Permutations
Popis výsledku anglicky
Given integers k >= 2 and a1, . . ., ak >= 1, let a := (a1, . . ., ak) and n := a1 + . . . + ak. An a-multiset permutation is a string of length n that contains exactly ai symbols i for each i = 1, . . ., k. In this work we consider the problem of exhaustively generating all a-multiset permutations by star transpositions, i.e., in each step, the first entry of the string is transposed with any other entry distinct from the first one. This is a far-ranging generalization of several known results. For example, it is known that permutations (a1 = . . . = ak = 1) can be generated by star transpositions, while combinations (k = 2) can be generated by these operations if and only if they are balanced (a1 = a2), with the positive case following from the middle levels theorem. To understand the problem in general, we introduce a parameter Delta(a):= n - 2 max{a1, . . ., ak} that allows us to distinguish three different regimes for this problem. We show that if Delta(a) < 0, then a star transposition Gray code for a-multiset permutations does not exist. We also construct such Gray codes for the case Delta(a) > 0, assuming that they exist for the case INCREMENT (a) = 0. For the case Delta(a) = 0 we present some partial positive results. Our proofs establish Hamilton-connectedness or Hamilton-laceability of the underlying flip graphs, and they answer several cases of a recent conjecture of Shen and Williams. In particular, we prove that the middle levels graph is Hamilton-laceable.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-08554S" target="_blank" >GA19-08554S: Struktury a algoritmy ve velmi symetrických grafech</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Leibniz International Proceedings in Informatics, LIPIcs
ISBN
978-3-95977-222-8
ISSN
1868-8969
e-ISSN
—
Počet stran výsledku
14
Strana od-do
1-14
Název nakladatele
Schloss Dagstuhl - Leibniz-Zentrum fur Informatik
Místo vydání
Dagstuhl, Germany
Místo konání akce
Virtual, Marseille
Datum konání akce
15. 5. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—