Finitistic dimension conjectures via Gorenstein projective dimension
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10452290" target="_blank" >RIV/00216208:11320/22:10452290 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=FaU85WcU1D" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=FaU85WcU1D</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jalgebra.2021.10.026" target="_blank" >10.1016/j.jalgebra.2021.10.026</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Finitistic dimension conjectures via Gorenstein projective dimension
Popis výsledku v původním jazyce
It is a well-known result of Auslander and Reiten that contravariant finiteness of the class P-infinity(fin)( of finitely generated modules of finite projective dimension) over an Artin algebra is a sufficient condition for validity of finitistic dimension conjectures. Motivated by the fact that finitistic dimensions of an algebra can alternatively be computed by Gorenstein projective dimension, we examine in this work the Gorenstein counterpart of Auslander-Reiten condition, namely contravariant finiteness of the class GP(infinity)(fin) (of finitely generated modules of finite Gorenstein projective dimension), and its relation to validity of finitistic dimension conjectures. It is proved that contravariant finiteness of the class GP(infinity)(fin) implies validity of the second finitistic dimension conjecture over left artinian rings. In the more special setting of Artin algebras, however, it is proved that the Auslander-Reiten sufficient condition and its Gorenstein counterpart are virtually equivalent in the sense that contravariant finiteness of the class GP(infinity)(fin) implies contravariant finiteness of the class P-infinity(fin) over any Artin algebra, and the converse holds for Artin algebras over which the class GP(0)(fin) (of finitely generated Gorenstein projective modules) is contravariantly finite. (c) 2021 Elsevier Inc. All rights reserved.
Název v anglickém jazyce
Finitistic dimension conjectures via Gorenstein projective dimension
Popis výsledku anglicky
It is a well-known result of Auslander and Reiten that contravariant finiteness of the class P-infinity(fin)( of finitely generated modules of finite projective dimension) over an Artin algebra is a sufficient condition for validity of finitistic dimension conjectures. Motivated by the fact that finitistic dimensions of an algebra can alternatively be computed by Gorenstein projective dimension, we examine in this work the Gorenstein counterpart of Auslander-Reiten condition, namely contravariant finiteness of the class GP(infinity)(fin) (of finitely generated modules of finite Gorenstein projective dimension), and its relation to validity of finitistic dimension conjectures. It is proved that contravariant finiteness of the class GP(infinity)(fin) implies validity of the second finitistic dimension conjecture over left artinian rings. In the more special setting of Artin algebras, however, it is proved that the Auslander-Reiten sufficient condition and its Gorenstein counterpart are virtually equivalent in the sense that contravariant finiteness of the class GP(infinity)(fin) implies contravariant finiteness of the class P-infinity(fin) over any Artin algebra, and the converse holds for Artin algebras over which the class GP(0)(fin) (of finitely generated Gorenstein projective modules) is contravariantly finite. (c) 2021 Elsevier Inc. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-13778S" target="_blank" >GA20-13778S: Symetrie, duality a aproximace v derivované algebraické geometrii a teorii reprezentací</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Algebra
ISSN
0021-8693
e-ISSN
1090-266X
Svazek periodika
591
Číslo periodika v rámci svazku
591
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
21
Strana od-do
15-35
Kód UT WoS článku
000715378600002
EID výsledku v databázi Scopus
2-s2.0-85118506103