Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A note on parametric resonance induced by a singular parameter modulation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10453338" target="_blank" >RIV/00216208:11320/22:10453338 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=DPpwtKN6jI" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=DPpwtKN6jI</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ijnonlinmec.2021.103893" target="_blank" >10.1016/j.ijnonlinmec.2021.103893</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A note on parametric resonance induced by a singular parameter modulation

  • Popis výsledku v původním jazyce

    We investigate the classical problem of motion of a mathematical pendulum with an oscillating pivot. This simple mechanical setting is frequently used as the prime example of a system exhibiting the parametric resonance phenomenon, which manifests itself by surprising stabilisation/destabilisation effects. In the classical case the pivot oscillations are described by a cosine wave, and the corresponding stability analysis requires one to investigate the behaviour of solutions to the Mathieu equation. This is not a straightforward procedure, and it does not lead to exact and simple analytical results expressed in terms of elementary functions. Consequently, the explanation of the parametric resonance phenomenon can be in this case obscured by the relatively involved technical calculations. We show that the stability analysis is much easier if one considers the pivot motion described by a non-smooth function-a triangular or a nearly rectangular wave. The non-smooth pivot motion leads to the presence of singularities (Dirac distributions) in the corresponding Mathieu type equation, which seemingly further complicates the analysis. Fortunately, this is only a minor technical difficulty. Once the mathematical setting for the non-smooth forcing is settled down, the corresponding stability diagram is indeed straightforward to obtain, and the stability boundaries are, unlike in the classical case, given in terms of simple analytical formulae involving only elementary functions.

  • Název v anglickém jazyce

    A note on parametric resonance induced by a singular parameter modulation

  • Popis výsledku anglicky

    We investigate the classical problem of motion of a mathematical pendulum with an oscillating pivot. This simple mechanical setting is frequently used as the prime example of a system exhibiting the parametric resonance phenomenon, which manifests itself by surprising stabilisation/destabilisation effects. In the classical case the pivot oscillations are described by a cosine wave, and the corresponding stability analysis requires one to investigate the behaviour of solutions to the Mathieu equation. This is not a straightforward procedure, and it does not lead to exact and simple analytical results expressed in terms of elementary functions. Consequently, the explanation of the parametric resonance phenomenon can be in this case obscured by the relatively involved technical calculations. We show that the stability analysis is much easier if one considers the pivot motion described by a non-smooth function-a triangular or a nearly rectangular wave. The non-smooth pivot motion leads to the presence of singularities (Dirac distributions) in the corresponding Mathieu type equation, which seemingly further complicates the analysis. Fortunately, this is only a minor technical difficulty. Once the mathematical setting for the non-smooth forcing is settled down, the corresponding stability diagram is indeed straightforward to obtain, and the stability boundaries are, unlike in the classical case, given in terms of simple analytical formulae involving only elementary functions.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GX20-11027X" target="_blank" >GX20-11027X: Matematická analýza parciálních diferenciálních rovnic popisujících silně nerovnovážné stavy v otevřených systémech termodynamiky kontinua</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Non-Linear Mechanics

  • ISSN

    0020-7462

  • e-ISSN

  • Svazek periodika

    139

  • Číslo periodika v rámci svazku

    March

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    8

  • Strana od-do

    103893

  • Kód UT WoS článku

    000781624600008

  • EID výsledku v databázi Scopus

    2-s2.0-85121867200