A note on parametric resonance induced by a singular parameter modulation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10453338" target="_blank" >RIV/00216208:11320/22:10453338 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=DPpwtKN6jI" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=DPpwtKN6jI</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijnonlinmec.2021.103893" target="_blank" >10.1016/j.ijnonlinmec.2021.103893</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A note on parametric resonance induced by a singular parameter modulation
Popis výsledku v původním jazyce
We investigate the classical problem of motion of a mathematical pendulum with an oscillating pivot. This simple mechanical setting is frequently used as the prime example of a system exhibiting the parametric resonance phenomenon, which manifests itself by surprising stabilisation/destabilisation effects. In the classical case the pivot oscillations are described by a cosine wave, and the corresponding stability analysis requires one to investigate the behaviour of solutions to the Mathieu equation. This is not a straightforward procedure, and it does not lead to exact and simple analytical results expressed in terms of elementary functions. Consequently, the explanation of the parametric resonance phenomenon can be in this case obscured by the relatively involved technical calculations. We show that the stability analysis is much easier if one considers the pivot motion described by a non-smooth function-a triangular or a nearly rectangular wave. The non-smooth pivot motion leads to the presence of singularities (Dirac distributions) in the corresponding Mathieu type equation, which seemingly further complicates the analysis. Fortunately, this is only a minor technical difficulty. Once the mathematical setting for the non-smooth forcing is settled down, the corresponding stability diagram is indeed straightforward to obtain, and the stability boundaries are, unlike in the classical case, given in terms of simple analytical formulae involving only elementary functions.
Název v anglickém jazyce
A note on parametric resonance induced by a singular parameter modulation
Popis výsledku anglicky
We investigate the classical problem of motion of a mathematical pendulum with an oscillating pivot. This simple mechanical setting is frequently used as the prime example of a system exhibiting the parametric resonance phenomenon, which manifests itself by surprising stabilisation/destabilisation effects. In the classical case the pivot oscillations are described by a cosine wave, and the corresponding stability analysis requires one to investigate the behaviour of solutions to the Mathieu equation. This is not a straightforward procedure, and it does not lead to exact and simple analytical results expressed in terms of elementary functions. Consequently, the explanation of the parametric resonance phenomenon can be in this case obscured by the relatively involved technical calculations. We show that the stability analysis is much easier if one considers the pivot motion described by a non-smooth function-a triangular or a nearly rectangular wave. The non-smooth pivot motion leads to the presence of singularities (Dirac distributions) in the corresponding Mathieu type equation, which seemingly further complicates the analysis. Fortunately, this is only a minor technical difficulty. Once the mathematical setting for the non-smooth forcing is settled down, the corresponding stability diagram is indeed straightforward to obtain, and the stability boundaries are, unlike in the classical case, given in terms of simple analytical formulae involving only elementary functions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GX20-11027X" target="_blank" >GX20-11027X: Matematická analýza parciálních diferenciálních rovnic popisujících silně nerovnovážné stavy v otevřených systémech termodynamiky kontinua</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Non-Linear Mechanics
ISSN
0020-7462
e-ISSN
—
Svazek periodika
139
Číslo periodika v rámci svazku
March
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
8
Strana od-do
103893
Kód UT WoS článku
000781624600008
EID výsledku v databázi Scopus
2-s2.0-85121867200