Financial Risk Meter FRM based on Expectiles
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10453726" target="_blank" >RIV/00216208:11320/22:10453726 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rE4nz00KG_" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rE4nz00KG_</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmva.2021.104881" target="_blank" >10.1016/j.jmva.2021.104881</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Financial Risk Meter FRM based on Expectiles
Popis výsledku v původním jazyce
The Financial Risk Meter (FRM) is an established quantitative tool that, based on conditional Value at Risk (VaR) ideas, yields insight into the dynamics of network risk. Originally, the FRM has been composed via Lasso based quantile regression, but we here extend it by incorporating the idea of expectiles, thus indicating not only the tail probability but rather the actual tail loss given a stress situation in the network. The expectile variant of the FRM enjoys several advantages: Firstly, the multivariate tail risk indicator conditional expectile-based VaR (CoEVaR) can be derived, which is sensitive to the magnitude of extreme losses. Next, FRM index is not restricted to an index compared to the quantile based FRM mechanisms, but can be expanded to a set of systemic tail risk indicators, which provide investors with numerous tools in terms of diverse risk preferences. The power of FRM also lies in displaying the FRM distribution across various entities every day. In a functional data context, the FRM identifies outlying curves and serves as a signal box to display aberrant functional behavior. Two distinct patterns can be discovered under high stress and during stable periods from the empirical results in the United States stock market. Furthermore, the framework is able to identify individual risk characteristics and to capture spillover effects in a network. (C) 2021 Elsevier Inc. All rights reserved.
Název v anglickém jazyce
Financial Risk Meter FRM based on Expectiles
Popis výsledku anglicky
The Financial Risk Meter (FRM) is an established quantitative tool that, based on conditional Value at Risk (VaR) ideas, yields insight into the dynamics of network risk. Originally, the FRM has been composed via Lasso based quantile regression, but we here extend it by incorporating the idea of expectiles, thus indicating not only the tail probability but rather the actual tail loss given a stress situation in the network. The expectile variant of the FRM enjoys several advantages: Firstly, the multivariate tail risk indicator conditional expectile-based VaR (CoEVaR) can be derived, which is sensitive to the magnitude of extreme losses. Next, FRM index is not restricted to an index compared to the quantile based FRM mechanisms, but can be expanded to a set of systemic tail risk indicators, which provide investors with numerous tools in terms of diverse risk preferences. The power of FRM also lies in displaying the FRM distribution across various entities every day. In a functional data context, the FRM identifies outlying curves and serves as a signal box to display aberrant functional behavior. Two distinct patterns can be discovered under high stress and during stable periods from the empirical results in the United States stock market. Furthermore, the framework is able to identify individual risk characteristics and to capture spillover effects in a network. (C) 2021 Elsevier Inc. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-28231X" target="_blank" >GX19-28231X: Dynamické modely pro digitální finance</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Multivariate Analysis
ISSN
0047-259X
e-ISSN
—
Svazek periodika
189
Číslo periodika v rámci svazku
May
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
104881
Kód UT WoS článku
000759649300017
EID výsledku v databázi Scopus
2-s2.0-85118996013