Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Financial Risk Meter FRM based on Expectiles

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10453726" target="_blank" >RIV/00216208:11320/22:10453726 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rE4nz00KG_" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rE4nz00KG_</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jmva.2021.104881" target="_blank" >10.1016/j.jmva.2021.104881</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Financial Risk Meter FRM based on Expectiles

  • Popis výsledku v původním jazyce

    The Financial Risk Meter (FRM) is an established quantitative tool that, based on conditional Value at Risk (VaR) ideas, yields insight into the dynamics of network risk. Originally, the FRM has been composed via Lasso based quantile regression, but we here extend it by incorporating the idea of expectiles, thus indicating not only the tail probability but rather the actual tail loss given a stress situation in the network. The expectile variant of the FRM enjoys several advantages: Firstly, the multivariate tail risk indicator conditional expectile-based VaR (CoEVaR) can be derived, which is sensitive to the magnitude of extreme losses. Next, FRM index is not restricted to an index compared to the quantile based FRM mechanisms, but can be expanded to a set of systemic tail risk indicators, which provide investors with numerous tools in terms of diverse risk preferences. The power of FRM also lies in displaying the FRM distribution across various entities every day. In a functional data context, the FRM identifies outlying curves and serves as a signal box to display aberrant functional behavior. Two distinct patterns can be discovered under high stress and during stable periods from the empirical results in the United States stock market. Furthermore, the framework is able to identify individual risk characteristics and to capture spillover effects in a network. (C) 2021 Elsevier Inc. All rights reserved.

  • Název v anglickém jazyce

    Financial Risk Meter FRM based on Expectiles

  • Popis výsledku anglicky

    The Financial Risk Meter (FRM) is an established quantitative tool that, based on conditional Value at Risk (VaR) ideas, yields insight into the dynamics of network risk. Originally, the FRM has been composed via Lasso based quantile regression, but we here extend it by incorporating the idea of expectiles, thus indicating not only the tail probability but rather the actual tail loss given a stress situation in the network. The expectile variant of the FRM enjoys several advantages: Firstly, the multivariate tail risk indicator conditional expectile-based VaR (CoEVaR) can be derived, which is sensitive to the magnitude of extreme losses. Next, FRM index is not restricted to an index compared to the quantile based FRM mechanisms, but can be expanded to a set of systemic tail risk indicators, which provide investors with numerous tools in terms of diverse risk preferences. The power of FRM also lies in displaying the FRM distribution across various entities every day. In a functional data context, the FRM identifies outlying curves and serves as a signal box to display aberrant functional behavior. Two distinct patterns can be discovered under high stress and during stable periods from the empirical results in the United States stock market. Furthermore, the framework is able to identify individual risk characteristics and to capture spillover effects in a network. (C) 2021 Elsevier Inc. All rights reserved.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GX19-28231X" target="_blank" >GX19-28231X: Dynamické modely pro digitální finance</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Multivariate Analysis

  • ISSN

    0047-259X

  • e-ISSN

  • Svazek periodika

    189

  • Číslo periodika v rámci svazku

    May

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    16

  • Strana od-do

    104881

  • Kód UT WoS článku

    000759649300017

  • EID výsledku v databázi Scopus

    2-s2.0-85118996013