AN AI APPROACH TO MEASURING FINANCIAL RISK
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10489895" target="_blank" >RIV/00216208:11320/23:10489895 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=sb~CJkP0HW" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=sb~CJkP0HW</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0217590819500668" target="_blank" >10.1142/S0217590819500668</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
AN AI APPROACH TO MEASURING FINANCIAL RISK
Popis výsledku v původním jazyce
AI artificial intelligence brings about new quantitative techniques to assess the state of an economy. Here, we describe a new measure for systemic risk: the Financial Risk Meter (FRM). This measure is based on the penalization parameter (lambda) of a linear quantile lasso regression. The FRM is calculated by taking the average of the penalization parameters over the 100 largest US publicly-traded financial institutions. We demonstrate the suitability of this AI-based risk measure by comparing the proposed FRM to other measures for systemic risk, such as VIX, SRISK and Google Trends. We find that mutual Granger causality exists between the FRM and these measures, which indicates the validity of the FRM as a systemic risk measure. The implementation of this project is carried out using parallel computing, the codes are published on www.quantlet.de with keyword FRM. The R package RiskAnalytics is another tool with the purpose of integrating and facilitating the research, calculation and analysis methods around the FRM project. The visualization and the up-to-date FRM can be found on hu.berlin/frm.
Název v anglickém jazyce
AN AI APPROACH TO MEASURING FINANCIAL RISK
Popis výsledku anglicky
AI artificial intelligence brings about new quantitative techniques to assess the state of an economy. Here, we describe a new measure for systemic risk: the Financial Risk Meter (FRM). This measure is based on the penalization parameter (lambda) of a linear quantile lasso regression. The FRM is calculated by taking the average of the penalization parameters over the 100 largest US publicly-traded financial institutions. We demonstrate the suitability of this AI-based risk measure by comparing the proposed FRM to other measures for systemic risk, such as VIX, SRISK and Google Trends. We find that mutual Granger causality exists between the FRM and these measures, which indicates the validity of the FRM as a systemic risk measure. The implementation of this project is carried out using parallel computing, the codes are published on www.quantlet.de with keyword FRM. The R package RiskAnalytics is another tool with the purpose of integrating and facilitating the research, calculation and analysis methods around the FRM project. The visualization and the up-to-date FRM can be found on hu.berlin/frm.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50201 - Economic Theory
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
The Singapore Economic Review
ISSN
0217-5908
e-ISSN
1793-6837
Svazek periodika
68
Číslo periodika v rámci svazku
05
Stát vydavatele periodika
SG - Singapurská republika
Počet stran výsledku
21
Strana od-do
1529-1549
Kód UT WoS článku
001082623600002
EID výsledku v databázi Scopus
2-s2.0-85076347879