Laser-induced terahertz spin transport in magnetic nanostructures arises from the same force as ultrafast demagnetization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10453833" target="_blank" >RIV/00216208:11320/22:10453833 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=kHjmQZ.Kui" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=kHjmQZ.Kui</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevB.106.144427" target="_blank" >10.1103/PhysRevB.106.144427</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Laser-induced terahertz spin transport in magnetic nanostructures arises from the same force as ultrafast demagnetization
Popis výsledku v původním jazyce
Laser-induced terahertz spin transport (TST) and ultrafast demagnetization (UDM) are central but so far disconnected phenomena in femtomagnetism and terahertz spintronics. Here, we use broadband terahertz emission spectroscopy to reliably measure both processes in one setup. We find that the rate of UDM in a single simple ferromagnetic metal film F such as Co70Fe30 or Ni80Fe20 has the same time evolution as TST from F into an adjacent normal-metal layer N such as Pt or W. As this remarkable agreement refers to two very different samples, an F layer vs an F|N stack, it does not result from the trivial fact that TST out of F reduces the F magnetization at the same rate. Instead, our observation strongly suggests that UDM in F and TST in F|N are driven by the same force, which is fully determined by the state of the ferromagnet. An analytical model quantitatively explains our measurements and reveals that both UDM in the F sample and TST in the associated F|N stack arise from a generalized spin voltage, i.e., an excess of magnetization, which is defined for arbitrary, nonthermal electron distributions. We also conclude that contributions due to a possible temperature difference between F and N, i.e., the spin-dependent Seebeck effect, and optical intersite spin transfer are minor in our experiment. Based on these findings, one can apply the vast knowledge of UDM to TST to significantly increase spin-current amplitudes and, thus, open promising pathways toward energy-efficient ultrafast spintronic devices.
Název v anglickém jazyce
Laser-induced terahertz spin transport in magnetic nanostructures arises from the same force as ultrafast demagnetization
Popis výsledku anglicky
Laser-induced terahertz spin transport (TST) and ultrafast demagnetization (UDM) are central but so far disconnected phenomena in femtomagnetism and terahertz spintronics. Here, we use broadband terahertz emission spectroscopy to reliably measure both processes in one setup. We find that the rate of UDM in a single simple ferromagnetic metal film F such as Co70Fe30 or Ni80Fe20 has the same time evolution as TST from F into an adjacent normal-metal layer N such as Pt or W. As this remarkable agreement refers to two very different samples, an F layer vs an F|N stack, it does not result from the trivial fact that TST out of F reduces the F magnetization at the same rate. Instead, our observation strongly suggests that UDM in F and TST in F|N are driven by the same force, which is fully determined by the state of the ferromagnet. An analytical model quantitatively explains our measurements and reveals that both UDM in the F sample and TST in the associated F|N stack arise from a generalized spin voltage, i.e., an excess of magnetization, which is defined for arbitrary, nonthermal electron distributions. We also conclude that contributions due to a possible temperature difference between F and N, i.e., the spin-dependent Seebeck effect, and optical intersite spin transfer are minor in our experiment. Based on these findings, one can apply the vast knowledge of UDM to TST to significantly increase spin-current amplitudes and, thus, open promising pathways toward energy-efficient ultrafast spintronic devices.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review B
ISSN
2469-9950
e-ISSN
2469-9969
Svazek periodika
106
Číslo periodika v rámci svazku
14
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
22
Strana od-do
144427
Kód UT WoS článku
000878594200002
EID výsledku v databázi Scopus
2-s2.0-85141498409