Adjusting optical and fluorescent properties of quantum dots: Moving towards best optical heat-rejecting materials
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10453865" target="_blank" >RIV/00216208:11320/22:10453865 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=0M5r_CvTue" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=0M5r_CvTue</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.solener.2022.04.026" target="_blank" >10.1016/j.solener.2022.04.026</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Adjusting optical and fluorescent properties of quantum dots: Moving towards best optical heat-rejecting materials
Popis výsledku v původním jazyce
Quantum dots (QDs) coatings have recently attracted attentions as novel nano-scale fluorescent cooling materials with adjustable thermo-optical properties for urban overheating mitigation application. In this paper, a mathematical method for the prediction of impact of optical and fluorescent properties (i.e. absorption edge wavelength (lambda AE) and quantum yield (QY)) on fluorescent cooling indicators including re-emitted energy (QPL), effective solar reflection (ESR), and PL-related surface temperature reduction was proposed. The experimental thermal evaluation testing on three PbS QDs sample with different fluorescent properties and their corresponding non-fluorescent samples was performed to assess the accuracy of the proposed predictive model and evaluate the impact of fluorescent/optical properties on their cooling potential. The validated model was then used to optimize the fluorescent cooling potential for QDs samples with different fluorescent/optical properties. According to the model results, surface temperature reduction potential through PL effect demonstrates its highest value for QDs with solar absorption and QY near to unity, and lambda AE at around 1300 nm. QDs coatings with the optimal solar absorption, QY, and lambda AE showed up to 35 degrees C lower surface temperature than their corresponding non-fluorescent reference sample in a typical sunny day in Sydney. The maximum fluorescence contribution (Effective solar reflection (ESR)- Solar reflection (R)) is also estimated to be 0.44 for the fluorescent material with optimal optical and fluorescent property. Results of this study will support the next phase of research on fluorescent cooling.
Název v anglickém jazyce
Adjusting optical and fluorescent properties of quantum dots: Moving towards best optical heat-rejecting materials
Popis výsledku anglicky
Quantum dots (QDs) coatings have recently attracted attentions as novel nano-scale fluorescent cooling materials with adjustable thermo-optical properties for urban overheating mitigation application. In this paper, a mathematical method for the prediction of impact of optical and fluorescent properties (i.e. absorption edge wavelength (lambda AE) and quantum yield (QY)) on fluorescent cooling indicators including re-emitted energy (QPL), effective solar reflection (ESR), and PL-related surface temperature reduction was proposed. The experimental thermal evaluation testing on three PbS QDs sample with different fluorescent properties and their corresponding non-fluorescent samples was performed to assess the accuracy of the proposed predictive model and evaluate the impact of fluorescent/optical properties on their cooling potential. The validated model was then used to optimize the fluorescent cooling potential for QDs samples with different fluorescent/optical properties. According to the model results, surface temperature reduction potential through PL effect demonstrates its highest value for QDs with solar absorption and QY near to unity, and lambda AE at around 1300 nm. QDs coatings with the optimal solar absorption, QY, and lambda AE showed up to 35 degrees C lower surface temperature than their corresponding non-fluorescent reference sample in a typical sunny day in Sydney. The maximum fluorescence contribution (Effective solar reflection (ESR)- Solar reflection (R)) is also estimated to be 0.44 for the fluorescent material with optimal optical and fluorescent property. Results of this study will support the next phase of research on fluorescent cooling.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Solar Energy
ISSN
0038-092X
e-ISSN
1471-1257
Svazek periodika
238
Číslo periodika v rámci svazku
238
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
272-279
Kód UT WoS článku
000796580700004
EID výsledku v databázi Scopus
2-s2.0-85130145301