On the combination of quantum dots with near-infrared reflective base coats to maximize their urban overheating mitigation potential
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10420710" target="_blank" >RIV/00216208:11320/20:10420710 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=BzE3C4mjQo" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=BzE3C4mjQo</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.solener.2020.09.069" target="_blank" >10.1016/j.solener.2020.09.069</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the combination of quantum dots with near-infrared reflective base coats to maximize their urban overheating mitigation potential
Popis výsledku v původním jazyce
Application of highly absorptive construction materials is proved to be one of leading causes of urban overheating in big cities. To avoid the excessive heat by the conventional construction materials, several advanced heat-rejecting coating technologies were developed during the last decades. The main idea behind heat-rejecting coatings is to have colder coatings with the same appearance and colour of conventional coatings. One of the existing technologies for heat-rejecting coatings are advanced coatings with high solar reflection in the infrared range or so-called cool coatings. Recently, re-emission of the visible-range light by nano-scale semiconductors, known as Quantum Dots (QDs), were introduced as another effective heat-rejecting technology. In this paper, we showed that QDs also demonstrate a very high solar transmission in the near-infrared range, and therefore, highly near-infrared reflective base layer can significantly improve their cooling potential. The high transmission value in the near-infrared range is due to the low absorption coefficient in the wavelengths longer than absorption edge wavelength (i.e. the wavelength corresponding to the bandgap energy) in semiconductors. We show that surface temperature reduction potential of CdSe/ZnS QDs film through fluorescent cooling is about 2.5 degrees C, which could be increased by another 8.1 degrees C with a highly near-infrared reflective base layer in a typical sunny day.
Název v anglickém jazyce
On the combination of quantum dots with near-infrared reflective base coats to maximize their urban overheating mitigation potential
Popis výsledku anglicky
Application of highly absorptive construction materials is proved to be one of leading causes of urban overheating in big cities. To avoid the excessive heat by the conventional construction materials, several advanced heat-rejecting coating technologies were developed during the last decades. The main idea behind heat-rejecting coatings is to have colder coatings with the same appearance and colour of conventional coatings. One of the existing technologies for heat-rejecting coatings are advanced coatings with high solar reflection in the infrared range or so-called cool coatings. Recently, re-emission of the visible-range light by nano-scale semiconductors, known as Quantum Dots (QDs), were introduced as another effective heat-rejecting technology. In this paper, we showed that QDs also demonstrate a very high solar transmission in the near-infrared range, and therefore, highly near-infrared reflective base layer can significantly improve their cooling potential. The high transmission value in the near-infrared range is due to the low absorption coefficient in the wavelengths longer than absorption edge wavelength (i.e. the wavelength corresponding to the bandgap energy) in semiconductors. We show that surface temperature reduction potential of CdSe/ZnS QDs film through fluorescent cooling is about 2.5 degrees C, which could be increased by another 8.1 degrees C with a highly near-infrared reflective base layer in a typical sunny day.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Solar Energy
ISSN
0038-092X
e-ISSN
—
Svazek periodika
211
Číslo periodika v rámci svazku
NOV 15 2020
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
6
Strana od-do
111-116
Kód UT WoS článku
000593745900005
EID výsledku v databázi Scopus
2-s2.0-85091655122