Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Enhancing the cooling potential of photoluminescent materials through evaluation of thermal and transmission loss mechanisms

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10436148" target="_blank" >RIV/00216208:11320/21:10436148 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rHbGtkfueG" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rHbGtkfueG</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41598-021-94354-7" target="_blank" >10.1038/s41598-021-94354-7</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Enhancing the cooling potential of photoluminescent materials through evaluation of thermal and transmission loss mechanisms

  • Popis výsledku v původním jazyce

    Photoluminescent materials are advanced cutting-edge heat-rejecting materials capable of reemitting a part of the absorbed light through radiative/non-thermal recombination of excited electrons to their ground energy state. Photoluminescent materials have recently been developed and tested as advanced non-white heat-rejecting materials for urban heat mitigation application. Photoluminescent materials has shown promising cooling potential for urban heat mitigation application, but further developments should be made to achieve optimal photoluminescence cooling potential. In this paper, an advanced mathematical model is developed to explore the most efficient methods to enhance the photoluminescence cooling potential through estimation of contribution of non-radiative mechanisms. The non-radiative recombination mechanisms include: (1) Transmission loss and (2) Thermal losses including thermalization, quenching, and Stokes shift. The results on transmission and thermal loss mechanisms could be used for systems solely relying on photoluminescence cooling, while the thermal loss estimations can be helpful to minimize the non-radiative losses of both integrated photoluminescent-near infrared (NIR) reflective and stand-alone photoluminescent systems. As per our results, the transmission loss is higher than thermal loss in photoluminescent materials with an absorption edge wavelength (lambda (AE)) shorter than 794 nm and quantum yield (QY) of 50%. Our predictions show that thermalization loss overtakes quenching in photoluminescent materials with lambda (AE) longer than 834 nm and QY of 50%. The results also show that thermalization, quenching, and Stokes shift constitute around 56.8%, 35%, and 8.2% of the overall thermal loss. Results of this research can be used as a guide for the future research to enhance the photoluminescence cooling potential for urban heat mitigation application.

  • Název v anglickém jazyce

    Enhancing the cooling potential of photoluminescent materials through evaluation of thermal and transmission loss mechanisms

  • Popis výsledku anglicky

    Photoluminescent materials are advanced cutting-edge heat-rejecting materials capable of reemitting a part of the absorbed light through radiative/non-thermal recombination of excited electrons to their ground energy state. Photoluminescent materials have recently been developed and tested as advanced non-white heat-rejecting materials for urban heat mitigation application. Photoluminescent materials has shown promising cooling potential for urban heat mitigation application, but further developments should be made to achieve optimal photoluminescence cooling potential. In this paper, an advanced mathematical model is developed to explore the most efficient methods to enhance the photoluminescence cooling potential through estimation of contribution of non-radiative mechanisms. The non-radiative recombination mechanisms include: (1) Transmission loss and (2) Thermal losses including thermalization, quenching, and Stokes shift. The results on transmission and thermal loss mechanisms could be used for systems solely relying on photoluminescence cooling, while the thermal loss estimations can be helpful to minimize the non-radiative losses of both integrated photoluminescent-near infrared (NIR) reflective and stand-alone photoluminescent systems. As per our results, the transmission loss is higher than thermal loss in photoluminescent materials with an absorption edge wavelength (lambda (AE)) shorter than 794 nm and quantum yield (QY) of 50%. Our predictions show that thermalization loss overtakes quenching in photoluminescent materials with lambda (AE) longer than 834 nm and QY of 50%. The results also show that thermalization, quenching, and Stokes shift constitute around 56.8%, 35%, and 8.2% of the overall thermal loss. Results of this research can be used as a guide for the future research to enhance the photoluminescence cooling potential for urban heat mitigation application.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Scientific Reports

  • ISSN

    2045-2322

  • e-ISSN

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    9

  • Strana od-do

    14725

  • Kód UT WoS článku

    000675840600039

  • EID výsledku v databázi Scopus

    2-s2.0-85110589609