RANDOM 2-CELL EMBEDDINGS OF MULTISTARS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10453968" target="_blank" >RIV/00216208:11320/22:10453968 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=c.4w0vq8Om" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=c.4w0vq8Om</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1090/proc/15899" target="_blank" >10.1090/proc/15899</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
RANDOM 2-CELL EMBEDDINGS OF MULTISTARS
Popis výsledku v původním jazyce
Random 2-cell embeddings of a given graph G are obtained by choosing a random local rotation around every vertex. We analyze the expected number of faces, E[FG], of such an embedding which is equivalent to studying its average genus. So far, tight results are known for two families called monopoles and dipoles. We extend the dipole result to a more general family called multistars, i.e., loopless multigraphs in which there is a vertex incident with all the edges. In particular, we show that the expected number of faces of every multistar with n nonleaf edges lies in an interval of length 2/(n + 1) centered at the expected number of faces of an n-edge dipole. This allows us to derive bounds on E[FG] for any given graph G in terms of vertex degrees. We conjecture that E[FG] <=O(n) for any simple n-vertex graph G.
Název v anglickém jazyce
RANDOM 2-CELL EMBEDDINGS OF MULTISTARS
Popis výsledku anglicky
Random 2-cell embeddings of a given graph G are obtained by choosing a random local rotation around every vertex. We analyze the expected number of faces, E[FG], of such an embedding which is equivalent to studying its average genus. So far, tight results are known for two families called monopoles and dipoles. We extend the dipole result to a more general family called multistars, i.e., loopless multigraphs in which there is a vertex incident with all the edges. In particular, we show that the expected number of faces of every multistar with n nonleaf edges lies in an interval of length 2/(n + 1) centered at the expected number of faces of an n-edge dipole. This allows us to derive bounds on E[FG] for any given graph G in terms of vertex degrees. We conjecture that E[FG] <=O(n) for any simple n-vertex graph G.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-21082S" target="_blank" >GA19-21082S: Grafy a jejich algebraické vlastnosti</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Proceedings of the American Mathematical Society
ISSN
0002-9939
e-ISSN
1088-6826
Svazek periodika
150
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
3699-3713
Kód UT WoS článku
000808522600001
EID výsledku v databázi Scopus
2-s2.0-85133308483