Temperature dependence of tensile deformation behavior and strain hardening of lean duplex stainless steels
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10454452" target="_blank" >RIV/00216208:11320/22:10454452 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=G-57r61yDe" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=G-57r61yDe</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmrt.2022.07.040" target="_blank" >10.1016/j.jmrt.2022.07.040</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Temperature dependence of tensile deformation behavior and strain hardening of lean duplex stainless steels
Popis výsledku v původním jazyce
Two lean duplex stainless steels with different manganese contents (4 and 8 wt.%) were deformed in the tensile mode in the temperature range of 25-300 degrees C. The deformation-induced martensitic transformation was characterized as the main austenite deformation mechanism of 4Mn steel at room temperature. In contrast, the strain hardening behavior of 8Mn steel was regulated by the cooperation of twinning induced plasticity and transformation induced plasticity. This was justified considering the lower austenite fraction and austenite stability in 4Mn compared to the steel containing a higher manganese content. Mechanical properties such as ultimate tensile strength and uniform elongation in both steels were significantly changed as the deformation temperature was increased. Differences in chemical composition and deformation temperature led to changing deformation mode due to strain partitioning between austenite and ferrite, austenite stability, and stacking fault energy. The most important factors influencing the mechanical properties are austenite stability and stacking fault energy at elevated temperatures. It was observed that as the austenite stability increases, martensitic transformation occurs directly from austenite grain and annealing twin boundaries but does not significantly improve strength and ductility. The strain partitioning between austenite and ferrite could provide a proper condition for strain-induced martensite transformation and deformation twinning, thereby enhanced mechanical properties at elevated temperatures. (C) 2022 The Author(s). Published by Elsevier B.V.
Název v anglickém jazyce
Temperature dependence of tensile deformation behavior and strain hardening of lean duplex stainless steels
Popis výsledku anglicky
Two lean duplex stainless steels with different manganese contents (4 and 8 wt.%) were deformed in the tensile mode in the temperature range of 25-300 degrees C. The deformation-induced martensitic transformation was characterized as the main austenite deformation mechanism of 4Mn steel at room temperature. In contrast, the strain hardening behavior of 8Mn steel was regulated by the cooperation of twinning induced plasticity and transformation induced plasticity. This was justified considering the lower austenite fraction and austenite stability in 4Mn compared to the steel containing a higher manganese content. Mechanical properties such as ultimate tensile strength and uniform elongation in both steels were significantly changed as the deformation temperature was increased. Differences in chemical composition and deformation temperature led to changing deformation mode due to strain partitioning between austenite and ferrite, austenite stability, and stacking fault energy. The most important factors influencing the mechanical properties are austenite stability and stacking fault energy at elevated temperatures. It was observed that as the austenite stability increases, martensitic transformation occurs directly from austenite grain and annealing twin boundaries but does not significantly improve strength and ductility. The strain partitioning between austenite and ferrite could provide a proper condition for strain-induced martensite transformation and deformation twinning, thereby enhanced mechanical properties at elevated temperatures. (C) 2022 The Author(s). Published by Elsevier B.V.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000485" target="_blank" >EF15_003/0000485: Centrum nanomateriálů pro pokročilé aplikace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Materials Research and Technology
ISSN
2238-7854
e-ISSN
2214-0697
Svazek periodika
20
Číslo periodika v rámci svazku
20
Stát vydavatele periodika
BR - Brazilská federativní republika
Počet stran výsledku
13
Strana od-do
330-342
Kód UT WoS článku
000878447700003
EID výsledku v databázi Scopus
2-s2.0-85137343026