Observed and Modeled Mountain Waves from the Surface to the Mesosphere near the Drake Passage
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10454798" target="_blank" >RIV/00216208:11320/22:10454798 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Yk-lytG.Gm" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Yk-lytG.Gm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1175/JAS-D-21-0252.1" target="_blank" >10.1175/JAS-D-21-0252.1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Observed and Modeled Mountain Waves from the Surface to the Mesosphere near the Drake Passage
Popis výsledku v původním jazyce
Four state-of-the-science numerical weather prediction (NWP) models were used to perform mountain wave (MW)-resolving hindcasts over the Drake Passage of a 10-day period in 2010 with numerous observed MW cases. The Integrated Forecast System (IFS) and the Icosahedral Nonhydrostatic (ICON) model were run at Delta x approximate to 9 and 13 km globally. TheWeather Research and Forecasting (WRF) Model and the Met Office Unified Model (UM) were both configured with a Dx 5 3-km regional domain. All domains had tops near 1 Pa (z approximate to 80 km). These deep domains allowed quantitative validation against Atmospheric Infrared Sounder (AIRS) observations, accounting for observation time, viewing geometry, and radiative transfer. All models reproduced observed middle-atmosphere MWs with remarkable skill. Increased horizontal resolution improved validations. Still, all models underrepresented observed MW amplitudes, even after accounting for model effective resolution and instrument noise, suggesting even at Delta x approximate to 3-km resolution, small-scale MWs are underresolved and/ or overdiffused. MWdrag parameterizations are still necessary in NWP models at current operational resolutions of Delta x approximate to 10 km. Upper GW sponge layers in the operationally configured models significantly, artificially reduced MW amplitudes in the upper stratosphere and mesosphere. In the IFS, parameterized GW drags partly compensated this deficiency, but still, total drags were approximate to 6 times smaller than that resolved at Delta x approximate to 3 km. Meridionally propagating MWs significantly enhance zonal drag over the Drake Passage. Interestingly, drag associated with meridional fluxes of zonal momentum (i.e., (u'v') over bar) were important; not accounting for these terms results in a drag in the wrong direction at and below the polar night jet.
Název v anglickém jazyce
Observed and Modeled Mountain Waves from the Surface to the Mesosphere near the Drake Passage
Popis výsledku anglicky
Four state-of-the-science numerical weather prediction (NWP) models were used to perform mountain wave (MW)-resolving hindcasts over the Drake Passage of a 10-day period in 2010 with numerous observed MW cases. The Integrated Forecast System (IFS) and the Icosahedral Nonhydrostatic (ICON) model were run at Delta x approximate to 9 and 13 km globally. TheWeather Research and Forecasting (WRF) Model and the Met Office Unified Model (UM) were both configured with a Dx 5 3-km regional domain. All domains had tops near 1 Pa (z approximate to 80 km). These deep domains allowed quantitative validation against Atmospheric Infrared Sounder (AIRS) observations, accounting for observation time, viewing geometry, and radiative transfer. All models reproduced observed middle-atmosphere MWs with remarkable skill. Increased horizontal resolution improved validations. Still, all models underrepresented observed MW amplitudes, even after accounting for model effective resolution and instrument noise, suggesting even at Delta x approximate to 3-km resolution, small-scale MWs are underresolved and/ or overdiffused. MWdrag parameterizations are still necessary in NWP models at current operational resolutions of Delta x approximate to 10 km. Upper GW sponge layers in the operationally configured models significantly, artificially reduced MW amplitudes in the upper stratosphere and mesosphere. In the IFS, parameterized GW drags partly compensated this deficiency, but still, total drags were approximate to 6 times smaller than that resolved at Delta x approximate to 3 km. Meridionally propagating MWs significantly enhance zonal drag over the Drake Passage. Interestingly, drag associated with meridional fluxes of zonal momentum (i.e., (u'v') over bar) were important; not accounting for these terms results in a drag in the wrong direction at and below the polar night jet.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10509 - Meteorology and atmospheric sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/EF19_074%2F0016231" target="_blank" >EF19_074/0016231: Mobilita pracovníků UK MSCA-IF III</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journals of the Atmospheric Sciences
ISSN
0022-4928
e-ISSN
1520-0469
Svazek periodika
79
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
24
Strana od-do
909-932
Kód UT WoS článku
000808410000001
EID výsledku v databázi Scopus
2-s2.0-85129946535