Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Estimates of Southern Hemispheric Gravity Wave Momentum Fluxes across Observations, Reanalyses, and Kilometer-Scale Numerical Weather Prediction Model

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10490179" target="_blank" >RIV/00216208:11320/24:10490179 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ZtlPkLxuyU" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ZtlPkLxuyU</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1175/JAS-D-23-0095.1" target="_blank" >10.1175/JAS-D-23-0095.1</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Estimates of Southern Hemispheric Gravity Wave Momentum Fluxes across Observations, Reanalyses, and Kilometer-Scale Numerical Weather Prediction Model

  • Popis výsledku v původním jazyce

    Gravity waves (GWs) are among the key drivers of the meridional overturning circulation in the mesosphere and upper stratosphere. Their representation in climate models suffers from insufficient resolution and limited observational constraints on their parameterizations. This obscures assessments of middle atmospheric circulation changes in a changing climate. This study presents a comprehensive analysis of stratospheric GW activity above and downstream of the Andes from 1 to 15 August 2019, with special focus on GW representation ranging from an unprecedented kilometerscale global forecast model (1.4 km ECMWF IFS), ground -based Rayleigh lidar (CORAL) observations, modern reanalysis (ERA5), to a coarse -resolution climate model (EMAC). Resolved vertical flux of zonal GW momentum (GWMF) is found to be stronger by a factor of at least 2-2.5 in IFS compared to ERA5. Compared to resolved GWMF in IFS, parameterizations in ERA5 and EMAC continue to inaccurately generate excessive GWMF poleward of 608S, yielding prominent differences between resolved and parameterized GWMFs. A like -to -like validation of GW profiles in IFS and ERA5 reveals similar wave structures. Still, even at ;1 km resolution, the resolved waves in IFS are weaker than those observed by lidar. Further, GWMF estimates across datasets reveal that temperature -based proxies, based on midfrequency approximations for linear GWs, overestimate GWMF due to simplifications and uncertainties in GW wavelength estimation from data. Overall, the analysis provides GWMF benchmarks for parameterization validation and calls for three-dimensional GW parameterizations, better upper -boundary treatment, and vertical resolution increases commensurate with increases in horizontal resolution in models, for a more realistic GW analysis. SIGNIFICANCE STATEMENT: Gravity wave-induced momentum forcing forms a key component of the middle atmospheric circulation. However, complete knowledge of gravity waves, their atmospheric effects, and their long-term trends are obscured due to limited global observations, and the inability of current climate models to fully resolve them. This study combines a kilometer -scale forecast model, modern reanalysis, and a coarse -resolution climate model to first compare the resolved and parameterized momentum fluxes by gravity waves generated over the Andes, and then evaluate the fluxes using a state-of-the-art ground -based Rayleigh lidar. Our analysis reveals shortcomings in current model parameterizations of gravity waves in the middle atmosphere and highlights the sensitivity of the estimated flux to the formulation used.

  • Název v anglickém jazyce

    Estimates of Southern Hemispheric Gravity Wave Momentum Fluxes across Observations, Reanalyses, and Kilometer-Scale Numerical Weather Prediction Model

  • Popis výsledku anglicky

    Gravity waves (GWs) are among the key drivers of the meridional overturning circulation in the mesosphere and upper stratosphere. Their representation in climate models suffers from insufficient resolution and limited observational constraints on their parameterizations. This obscures assessments of middle atmospheric circulation changes in a changing climate. This study presents a comprehensive analysis of stratospheric GW activity above and downstream of the Andes from 1 to 15 August 2019, with special focus on GW representation ranging from an unprecedented kilometerscale global forecast model (1.4 km ECMWF IFS), ground -based Rayleigh lidar (CORAL) observations, modern reanalysis (ERA5), to a coarse -resolution climate model (EMAC). Resolved vertical flux of zonal GW momentum (GWMF) is found to be stronger by a factor of at least 2-2.5 in IFS compared to ERA5. Compared to resolved GWMF in IFS, parameterizations in ERA5 and EMAC continue to inaccurately generate excessive GWMF poleward of 608S, yielding prominent differences between resolved and parameterized GWMFs. A like -to -like validation of GW profiles in IFS and ERA5 reveals similar wave structures. Still, even at ;1 km resolution, the resolved waves in IFS are weaker than those observed by lidar. Further, GWMF estimates across datasets reveal that temperature -based proxies, based on midfrequency approximations for linear GWs, overestimate GWMF due to simplifications and uncertainties in GW wavelength estimation from data. Overall, the analysis provides GWMF benchmarks for parameterization validation and calls for three-dimensional GW parameterizations, better upper -boundary treatment, and vertical resolution increases commensurate with increases in horizontal resolution in models, for a more realistic GW analysis. SIGNIFICANCE STATEMENT: Gravity wave-induced momentum forcing forms a key component of the middle atmospheric circulation. However, complete knowledge of gravity waves, their atmospheric effects, and their long-term trends are obscured due to limited global observations, and the inability of current climate models to fully resolve them. This study combines a kilometer -scale forecast model, modern reanalysis, and a coarse -resolution climate model to first compare the resolved and parameterized momentum fluxes by gravity waves generated over the Andes, and then evaluate the fluxes using a state-of-the-art ground -based Rayleigh lidar. Our analysis reveals shortcomings in current model parameterizations of gravity waves in the middle atmosphere and highlights the sensitivity of the estimated flux to the formulation used.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10509 - Meteorology and atmospheric sciences

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GC21-20293J" target="_blank" >GC21-20293J: Vliv lokalizovaného působení gravitačních vln na střední atmosféru - vznik, dopady a dlouhodobý vývoj (MATELO-FILE)</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journals of the Atmospheric Sciences

  • ISSN

    0022-4928

  • e-ISSN

    1520-0469

  • Svazek periodika

    81

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    22

  • Strana od-do

    583-604

  • Kód UT WoS článku

    001171818700004

  • EID výsledku v databázi Scopus