Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Adjoint maps between implicative semilattices and continuity of localic maps

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10455252" target="_blank" >RIV/00216208:11320/22:10455252 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rvxyB97Sg6" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rvxyB97Sg6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00012-022-00767-4" target="_blank" >10.1007/s00012-022-00767-4</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Adjoint maps between implicative semilattices and continuity of localic maps

  • Popis výsledku v původním jazyce

    We study residuated homomorphisms (r-morphisms) and their adjoints, the so-called localizations (or l-morphisms), between implicative semilattices, because these objects may be characterized as semilattices whose unary meet operations have adjoints. Since left resp. right adjoint maps are the residuated resp. residual maps (having the property that preimages of principal downsets resp. upsets are again such), one may not only regard the l-morphisms as abstract continuous maps in a pointfree framework (as familiar in the complete case), but also characterize them by concrete closure-theoretical continuity properties. These concepts apply to locales (frames, complete Heyting lattices) and provide generalizations of continuous and open maps between spaces to an algebraic (not necessarily complete) pointfree setting.

  • Název v anglickém jazyce

    Adjoint maps between implicative semilattices and continuity of localic maps

  • Popis výsledku anglicky

    We study residuated homomorphisms (r-morphisms) and their adjoints, the so-called localizations (or l-morphisms), between implicative semilattices, because these objects may be characterized as semilattices whose unary meet operations have adjoints. Since left resp. right adjoint maps are the residuated resp. residual maps (having the property that preimages of principal downsets resp. upsets are again such), one may not only regard the l-morphisms as abstract continuous maps in a pointfree framework (as familiar in the complete case), but also characterize them by concrete closure-theoretical continuity properties. These concepts apply to locales (frames, complete Heyting lattices) and provide generalizations of continuous and open maps between spaces to an algebraic (not necessarily complete) pointfree setting.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Algebra Universalis

  • ISSN

    0002-5240

  • e-ISSN

    1420-8911

  • Svazek periodika

    83

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    23

  • Strana od-do

    13

  • Kód UT WoS článku

    000770767700002

  • EID výsledku v databázi Scopus

    2-s2.0-85126816202