A New Diagonal Separation and its Relations With the Hausdorff Property
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10455255" target="_blank" >RIV/00216208:11320/22:10455255 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=8WXrJrZXj1" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=8WXrJrZXj1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10485-021-09655-9" target="_blank" >10.1007/s10485-021-09655-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A New Diagonal Separation and its Relations With the Hausdorff Property
Popis výsledku v původním jazyce
Let P be a property of subobjects relevant in a category C. An object X is an element of C is P-separated if the diagonal in X x X has P; thus e.g. closedness in the category of topological spaces (resp. locales) induces the Hausdorff (resp. strong Hausdorff) axiom. In this paper we study the locales (frames) in which the diagonal is fitted (i.e., an intersection of open sublocales-we speak about F-separated locales). Recall that a locale is fit if each of its sublocales is fitted. Since this property is inherited by products and sublocales, fitness implies (Fsep) which is shown to be strictly weaker (one of the results of this paper). We show that (Fsep) is in a parallel with the strong Hausdorff axiom (sH): (1) it is characterized by a Dowker-Strauss type property of the combinatorial structure of the systems of frame homomorphisms L -> M (and therefore, in particular, it implies (T-U) for analogous reasons like (sH) does), and (2) in a certain duality with (sH) it is characterized in L by all almost homomorphisms (frame homomorphisms with slightly relaxed join-requirement) L -> M being frame homomorphisms (while one has such a characteristic of (sH) with weak homomorphisms, where meet-requirement is relaxed).
Název v anglickém jazyce
A New Diagonal Separation and its Relations With the Hausdorff Property
Popis výsledku anglicky
Let P be a property of subobjects relevant in a category C. An object X is an element of C is P-separated if the diagonal in X x X has P; thus e.g. closedness in the category of topological spaces (resp. locales) induces the Hausdorff (resp. strong Hausdorff) axiom. In this paper we study the locales (frames) in which the diagonal is fitted (i.e., an intersection of open sublocales-we speak about F-separated locales). Recall that a locale is fit if each of its sublocales is fitted. Since this property is inherited by products and sublocales, fitness implies (Fsep) which is shown to be strictly weaker (one of the results of this paper). We show that (Fsep) is in a parallel with the strong Hausdorff axiom (sH): (1) it is characterized by a Dowker-Strauss type property of the combinatorial structure of the systems of frame homomorphisms L -> M (and therefore, in particular, it implies (T-U) for analogous reasons like (sH) does), and (2) in a certain duality with (sH) it is characterized in L by all almost homomorphisms (frame homomorphisms with slightly relaxed join-requirement) L -> M being frame homomorphisms (while one has such a characteristic of (sH) with weak homomorphisms, where meet-requirement is relaxed).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Categorical Structures
ISSN
0927-2852
e-ISSN
1572-9095
Svazek periodika
30
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
17
Strana od-do
247-263
Kód UT WoS článku
000677932800001
EID výsledku v databázi Scopus
2-s2.0-85111520007