Approximate separable multichoice optimization over monotone systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10455312" target="_blank" >RIV/00216208:11320/22:10455312 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=mIMnrhuiN0" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=mIMnrhuiN0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.disopt.2021.100629" target="_blank" >10.1016/j.disopt.2021.100629</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Approximate separable multichoice optimization over monotone systems
Popis výsledku v původním jazyce
With each separable optimization problem over a given set of vectors is associated its multichoice counterpart which involves choosing n rather than one solutions from the set so as to maximize the given separable function over the sum of the chosen solutions. Such problems have been studied in various contexts under various names, such as load balancing in machine scheduling, congestion routing, minimum shared and vulnerable edge problems, and shifted optimization. Separable multichoice optimization has a very broad expressive power and can be hard already for explicitly given sets of binary points. In this article we consider the problem over monotone systems, also called independence systems. Typically such a system has exponential size, and we assume that it is presented implicitly by a linear optimization oracle. Our main results for separable multichoice optimization are the following. First, the problem over any monotone system with any separable concave function can be approximated in polynomial time with a constant approximation ratio which is independent of n. Second, the problem over any monotone system with an arbitrary separable function can be approximated in polynomial time with an approximation ratio of 1/(O(log n)). (C) 2021 Elsevier B.V. All rights reserved.
Název v anglickém jazyce
Approximate separable multichoice optimization over monotone systems
Popis výsledku anglicky
With each separable optimization problem over a given set of vectors is associated its multichoice counterpart which involves choosing n rather than one solutions from the set so as to maximize the given separable function over the sum of the chosen solutions. Such problems have been studied in various contexts under various names, such as load balancing in machine scheduling, congestion routing, minimum shared and vulnerable edge problems, and shifted optimization. Separable multichoice optimization has a very broad expressive power and can be hard already for explicitly given sets of binary points. In this article we consider the problem over monotone systems, also called independence systems. Typically such a system has exponential size, and we assume that it is presented implicitly by a linear optimization oracle. Our main results for separable multichoice optimization are the following. First, the problem over any monotone system with any separable concave function can be approximated in polynomial time with a constant approximation ratio which is independent of n. Second, the problem over any monotone system with an arbitrary separable function can be approximated in polynomial time with an approximation ratio of 1/(O(log n)). (C) 2021 Elsevier B.V. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-09142S" target="_blank" >GA17-09142S: Moderní algoritmy: Nové výzvy komplexních dat</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discrete Optimization
ISSN
1572-5286
e-ISSN
1873-636X
Svazek periodika
44
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
15
Strana od-do
100629
Kód UT WoS článku
000832713200006
EID výsledku v databázi Scopus
—