Vše
Vše

Co hledáte?

Vše
Projekty
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Inner Approximations for Polynomial Matrix Inequalities and Robust Stability Regions

Identifikátory výsledku

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Inner Approximations for Polynomial Matrix Inequalities and Robust Stability Regions

  • Popis výsledku v původním jazyce

    Following a polynomial approach, many robust fixedorder controller design problems can be formulated as optimization problems whose set of feasible solutions is modeled by parametrized polynomial matrix inequalities (PMIs). These feasibility sets are typically nonconvex. Given a parametrized PMI set, we provide a hierarchy of linear matrix inequality (LMI) problems whose optimal solutions generate inner approximations modeled by a single polynomial superlevel set. Those inner approximations converge ina well-defined analytic sense to the nonconvex original feasible set, with asymptotically vanishing conservatism. One may also impose the hierarchy of inner approximations to be nested or convex. In the latter case, they do not converge any more to the feasible set, but they can be used in a convex optimization framework at the price of some conservatism. Finally, we show that the specific geometry of nonconvex polynomial stability regions can be exploited to improve convergence of the h

  • Název v anglickém jazyce

    Inner Approximations for Polynomial Matrix Inequalities and Robust Stability Regions

  • Popis výsledku anglicky

    Following a polynomial approach, many robust fixedorder controller design problems can be formulated as optimization problems whose set of feasible solutions is modeled by parametrized polynomial matrix inequalities (PMIs). These feasibility sets are typically nonconvex. Given a parametrized PMI set, we provide a hierarchy of linear matrix inequality (LMI) problems whose optimal solutions generate inner approximations modeled by a single polynomial superlevel set. Those inner approximations converge ina well-defined analytic sense to the nonconvex original feasible set, with asymptotically vanishing conservatism. One may also impose the hierarchy of inner approximations to be nested or convex. In the latter case, they do not converge any more to the feasible set, but they can be used in a convex optimization framework at the price of some conservatism. Finally, we show that the specific geometry of nonconvex polynomial stability regions can be exploited to improve convergence of the h

Klasifikace

  • Druh

    Jx - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BC - Teorie a systémy řízení

  • OECD FORD obor

Návaznosti výsledku

Ostatní

  • Rok uplatnění

    2012

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Transactions on Automatic Control

  • ISSN

    0018-9286

  • e-ISSN

  • Svazek periodika

    57

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    12

  • Strana od-do

    1456-1467

  • Kód UT WoS článku

    000304609300009

  • EID výsledku v databázi Scopus

Základní informace

Druh výsledku

Jx - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

Jx

CEP

BC - Teorie a systémy řízení

Rok uplatnění

2012