Není k dispozici
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F06%3A03118073" target="_blank" >RIV/68407700:21230/06:03118073 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Convergent Relaxations of Polynomial Matrix Inequalities and Static Output Feedback
Popis výsledku v původním jazyce
Using a moment interpretation of recent results on sum-of-squares decompositions of nonnegative polynomial matrices, we propose a hierarchy of convex linear matrix inequality (LMI) relaxations to solve nonconvex polynomial matrix inequality (PMI) optimization problems, including bilinear matrix inequality (BMI) problems. This hierarchy of LMI relaxations generates a monotone sequence of lower bounds that converges to the global optimum. Results from the theory of moments are used to detect whether the global optimum is reached at a given LMI relaxation, and if so, to extract global minimizers that satisfy the PMI. The approach is successfully applied to PMIs arising from static output feedback design problems.
Název v anglickém jazyce
Convergent Relaxations of Polynomial Matrix Inequalities and Static Output Feedback
Popis výsledku anglicky
Using a moment interpretation of recent results on sum-of-squares decompositions of nonnegative polynomial matrices, we propose a hierarchy of convex linear matrix inequality (LMI) relaxations to solve nonconvex polynomial matrix inequality (PMI) optimization problems, including bilinear matrix inequality (BMI) problems. This hierarchy of LMI relaxations generates a monotone sequence of lower bounds that converges to the global optimum. Results from the theory of moments are used to detect whether the global optimum is reached at a given LMI relaxation, and if so, to extract global minimizers that satisfy the PMI. The approach is successfully applied to PMIs arising from static output feedback design problems.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BC - Teorie a systémy řízení
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2006
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Automatic Control
ISSN
0018-9286
e-ISSN
—
Svazek periodika
51
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
192-202
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—