Extending Partial Representations of Circular-Arc Graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10455448" target="_blank" >RIV/00216208:11320/22:10455448 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-15914-5_17" target="_blank" >https://doi.org/10.1007/978-3-031-15914-5_17</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-15914-5_17" target="_blank" >10.1007/978-3-031-15914-5_17</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Extending Partial Representations of Circular-Arc Graphs
Popis výsledku v původním jazyce
The partial representation extension problem generalizes the recognition problem for classes of graphs defined in terms of geometric representations. We consider this problem for circular-arc graphs, where several arcs are predrawn and we ask whether this partial representation can be completed. We show that this problem is NP-complete for circular-arc graphs, answering a question of Klavik et al. (2014). We complement this hardness with tractability results of the representation extension problem for various subclasses of circular-arc graphs. We give linear-time algorithms for extending normal proper Helly and proper Helly representations. For normal Helly circular-arc representations we give an O(n(3))-time algorithm where n is the number of vertices. Surprisingly, for Helly representations, the complexity hinges on the seemingly irrelevant detail of whether the predrawn arcs have distinct or non-distinct endpoints: In the former case the algorithm for normal Helly circular-arc representations can be extended, whereas the latter case turns out to be NP-complete. We also prove that the partial representation extension problem for unit circular-arc graphs is N P-complete.
Název v anglickém jazyce
Extending Partial Representations of Circular-Arc Graphs
Popis výsledku anglicky
The partial representation extension problem generalizes the recognition problem for classes of graphs defined in terms of geometric representations. We consider this problem for circular-arc graphs, where several arcs are predrawn and we ask whether this partial representation can be completed. We show that this problem is NP-complete for circular-arc graphs, answering a question of Klavik et al. (2014). We complement this hardness with tractability results of the representation extension problem for various subclasses of circular-arc graphs. We give linear-time algorithms for extending normal proper Helly and proper Helly representations. For normal Helly circular-arc representations we give an O(n(3))-time algorithm where n is the number of vertices. Surprisingly, for Helly representations, the complexity hinges on the seemingly irrelevant detail of whether the predrawn arcs have distinct or non-distinct endpoints: In the former case the algorithm for normal Helly circular-arc representations can be extended, whereas the latter case turns out to be NP-complete. We also prove that the partial representation extension problem for unit circular-arc graphs is N P-complete.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GC19-17314J" target="_blank" >GC19-17314J: Geometrické reprezentace grafů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE (WG 2022)
ISBN
978-3-031-15914-5
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
14
Strana od-do
230-243
Název nakladatele
SPRINGER INTERNATIONAL PUBLISHING AG
Místo vydání
CHAM
Místo konání akce
Tubingen
Datum konání akce
22. 6. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000866013700017