Streaming Algorithms for Geometric Steiner Forest
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10455634" target="_blank" >RIV/00216208:11320/22:10455634 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.4230/LIPIcs.ICALP.2022.47" target="_blank" >https://doi.org/10.4230/LIPIcs.ICALP.2022.47</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.ICALP.2022.47" target="_blank" >10.4230/LIPIcs.ICALP.2022.47</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Streaming Algorithms for Geometric Steiner Forest
Popis výsledku v původním jazyce
We consider an important generalization of the Steiner tree problem, the Steiner forest problem, in the Euclidean plane: the input is a multiset X SUBSET OF OR EQUAL TO ℝ2, partitioned into k color classes C1, C2,..., Ck SUBSET OF OR EQUAL TO X. The goal is to find a minimum-cost Euclidean graph G such that every color class Ci is connected in G. We study this Steiner forest problem in the streaming setting, where the stream consists of insertions and deletions of points to X. Each input point x ELEMENT OF X arrives with its color color(x) ELEMENT OF [k], and as usual for dynamic geometric streams, the input is restricted to the discrete grid {0,..., INCREMENT }2. We design a single-pass streaming algorithm that uses poly(k . log INCREMENT ) space and time, and estimates the cost of an optimal Steiner forest solution within ratio arbitrarily close to the famous Euclidean Steiner ratio α2 (currently 1.1547 <= α2 <= 1.214). This approximation guarantee matches the state of the art bound for streaming Steiner tree, i.e., when k = 1. Our approach relies on a novel combination of streaming techniques, like sampling and linear sketching, with the classical Arora-style dynamic-programming framework for geometric optimization problems, which usually requires large memory and has so far not been applied in the streaming setting. We complement our streaming algorithm for the Steiner forest problem with simple arguments showing that any finite approximation requires Ω(k) bits of space. (C) Artur Czumaj, Shaofeng H.-C. Jiang, Robert Krauthgamer, and Pavel Veselý; licensed under Creative Commons License CC-BY 4.0
Název v anglickém jazyce
Streaming Algorithms for Geometric Steiner Forest
Popis výsledku anglicky
We consider an important generalization of the Steiner tree problem, the Steiner forest problem, in the Euclidean plane: the input is a multiset X SUBSET OF OR EQUAL TO ℝ2, partitioned into k color classes C1, C2,..., Ck SUBSET OF OR EQUAL TO X. The goal is to find a minimum-cost Euclidean graph G such that every color class Ci is connected in G. We study this Steiner forest problem in the streaming setting, where the stream consists of insertions and deletions of points to X. Each input point x ELEMENT OF X arrives with its color color(x) ELEMENT OF [k], and as usual for dynamic geometric streams, the input is restricted to the discrete grid {0,..., INCREMENT }2. We design a single-pass streaming algorithm that uses poly(k . log INCREMENT ) space and time, and estimates the cost of an optimal Steiner forest solution within ratio arbitrarily close to the famous Euclidean Steiner ratio α2 (currently 1.1547 <= α2 <= 1.214). This approximation guarantee matches the state of the art bound for streaming Steiner tree, i.e., when k = 1. Our approach relies on a novel combination of streaming techniques, like sampling and linear sketching, with the classical Arora-style dynamic-programming framework for geometric optimization problems, which usually requires large memory and has so far not been applied in the streaming setting. We complement our streaming algorithm for the Steiner forest problem with simple arguments showing that any finite approximation requires Ω(k) bits of space. (C) Artur Czumaj, Shaofeng H.-C. Jiang, Robert Krauthgamer, and Pavel Veselý; licensed under Creative Commons License CC-BY 4.0
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-27871X" target="_blank" >GX19-27871X: Efektivní aproximační algoritmy a obvodová složitost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Leibniz International Proceedings in Informatics, LIPIcs
ISBN
978-3-95977-235-8
ISSN
1868-8969
e-ISSN
—
Počet stran výsledku
20
Strana od-do
—
Název nakladatele
Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
Místo vydání
Dagstuhl, Germany
Místo konání akce
Paříž, Francie
Datum konání akce
4. 7. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—