Streaming Algorithms for Geometric Steiner Forest
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10493442" target="_blank" >RIV/00216208:11320/24:10493442 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_8m-4DeLtv" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_8m-4DeLtv</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3663666" target="_blank" >10.1145/3663666</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Streaming Algorithms for Geometric Steiner Forest
Popis výsledku v původním jazyce
We consider a generalization of the Steiner tree problem, the Steiner forest problem, in the Euclidean plane: the input is a multiset X subset of R2, partitioned into k color classes C1,. .. , C k subset of X . The goal is to find a minimum-cost Euclidean graph G such that every color class C is connected in G . We study this Steiner forest problem in the streaming setting, where the stream consists of insertions and deletions of points to X . Each input point x is an element of X arrives with its color color(x) is an element of [k], and as usual for dynamic geometric streams, the input is restricted to the discrete grid {1, ... , Delta }2. We design a single-pass streaming algorithm that uses poly(k <middle dot> log Delta) space and time, and estimates the cost of an optimal Steiner forest solution within ratio arbitrarily close to the famous Euclidean Steiner ratio a 2 (currently 1.1547 <= a 2 <= 1.214). This approximation guarantee matches the state-of-the-art bound for streaming Steiner tree, i.e., when k = 1, and it is a major open question to improve the ratio to 1 + & even for this special case. Our approach relies on a novel combination of streaming techniques, like sampling and linear sketching, with the classical Arora-style dynamic-programming framework for geometric optimization problems, which usually requires large memory and so far has not been applied in the streaming setting. We complement our streaming algorithm for the Steiner forest problem with simple arguments showing that any finite multiplicative approximation requires Omega (k) bits of space.
Název v anglickém jazyce
Streaming Algorithms for Geometric Steiner Forest
Popis výsledku anglicky
We consider a generalization of the Steiner tree problem, the Steiner forest problem, in the Euclidean plane: the input is a multiset X subset of R2, partitioned into k color classes C1,. .. , C k subset of X . The goal is to find a minimum-cost Euclidean graph G such that every color class C is connected in G . We study this Steiner forest problem in the streaming setting, where the stream consists of insertions and deletions of points to X . Each input point x is an element of X arrives with its color color(x) is an element of [k], and as usual for dynamic geometric streams, the input is restricted to the discrete grid {1, ... , Delta }2. We design a single-pass streaming algorithm that uses poly(k <middle dot> log Delta) space and time, and estimates the cost of an optimal Steiner forest solution within ratio arbitrarily close to the famous Euclidean Steiner ratio a 2 (currently 1.1547 <= a 2 <= 1.214). This approximation guarantee matches the state-of-the-art bound for streaming Steiner tree, i.e., when k = 1, and it is a major open question to improve the ratio to 1 + & even for this special case. Our approach relies on a novel combination of streaming techniques, like sampling and linear sketching, with the classical Arora-style dynamic-programming framework for geometric optimization problems, which usually requires large memory and so far has not been applied in the streaming setting. We complement our streaming algorithm for the Steiner forest problem with simple arguments showing that any finite multiplicative approximation requires Omega (k) bits of space.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-27871X" target="_blank" >GX19-27871X: Efektivní aproximační algoritmy a obvodová složitost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACM Transactions on Algorithms
ISSN
1549-6325
e-ISSN
1549-6333
Svazek periodika
20
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
38
Strana od-do
28
Kód UT WoS článku
001356761000007
EID výsledku v databázi Scopus
2-s2.0-85207020419