Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Streaming Algorithms for Geometric Steiner Forest

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10493442" target="_blank" >RIV/00216208:11320/24:10493442 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_8m-4DeLtv" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_8m-4DeLtv</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3663666" target="_blank" >10.1145/3663666</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Streaming Algorithms for Geometric Steiner Forest

  • Popis výsledku v původním jazyce

    We consider a generalization of the Steiner tree problem, the Steiner forest problem, in the Euclidean plane: the input is a multiset X subset of R2, partitioned into k color classes C1,. .. , C k subset of X . The goal is to find a minimum-cost Euclidean graph G such that every color class C is connected in G . We study this Steiner forest problem in the streaming setting, where the stream consists of insertions and deletions of points to X . Each input point x is an element of X arrives with its color color(x) is an element of [k], and as usual for dynamic geometric streams, the input is restricted to the discrete grid {1, ... , Delta }2. We design a single-pass streaming algorithm that uses poly(k &lt;middle dot&gt; log Delta) space and time, and estimates the cost of an optimal Steiner forest solution within ratio arbitrarily close to the famous Euclidean Steiner ratio a 2 (currently 1.1547 &lt;= a 2 &lt;= 1.214). This approximation guarantee matches the state-of-the-art bound for streaming Steiner tree, i.e., when k = 1, and it is a major open question to improve the ratio to 1 + &amp; even for this special case. Our approach relies on a novel combination of streaming techniques, like sampling and linear sketching, with the classical Arora-style dynamic-programming framework for geometric optimization problems, which usually requires large memory and so far has not been applied in the streaming setting. We complement our streaming algorithm for the Steiner forest problem with simple arguments showing that any finite multiplicative approximation requires Omega (k) bits of space.

  • Název v anglickém jazyce

    Streaming Algorithms for Geometric Steiner Forest

  • Popis výsledku anglicky

    We consider a generalization of the Steiner tree problem, the Steiner forest problem, in the Euclidean plane: the input is a multiset X subset of R2, partitioned into k color classes C1,. .. , C k subset of X . The goal is to find a minimum-cost Euclidean graph G such that every color class C is connected in G . We study this Steiner forest problem in the streaming setting, where the stream consists of insertions and deletions of points to X . Each input point x is an element of X arrives with its color color(x) is an element of [k], and as usual for dynamic geometric streams, the input is restricted to the discrete grid {1, ... , Delta }2. We design a single-pass streaming algorithm that uses poly(k &lt;middle dot&gt; log Delta) space and time, and estimates the cost of an optimal Steiner forest solution within ratio arbitrarily close to the famous Euclidean Steiner ratio a 2 (currently 1.1547 &lt;= a 2 &lt;= 1.214). This approximation guarantee matches the state-of-the-art bound for streaming Steiner tree, i.e., when k = 1, and it is a major open question to improve the ratio to 1 + &amp; even for this special case. Our approach relies on a novel combination of streaming techniques, like sampling and linear sketching, with the classical Arora-style dynamic-programming framework for geometric optimization problems, which usually requires large memory and so far has not been applied in the streaming setting. We complement our streaming algorithm for the Steiner forest problem with simple arguments showing that any finite multiplicative approximation requires Omega (k) bits of space.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GX19-27871X" target="_blank" >GX19-27871X: Efektivní aproximační algoritmy a obvodová složitost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ACM Transactions on Algorithms

  • ISSN

    1549-6325

  • e-ISSN

    1549-6333

  • Svazek periodika

    20

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    38

  • Strana od-do

    28

  • Kód UT WoS článku

    001356761000007

  • EID výsledku v databázi Scopus

    2-s2.0-85207020419