Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Polynomial-time Algorithm for Maximum Weight Independent Set on P6-free Graphs

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10455778" target="_blank" >RIV/00216208:11320/22:10455778 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=9l0I.d-wh0" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=9l0I.d-wh0</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3414473" target="_blank" >10.1145/3414473</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Polynomial-time Algorithm for Maximum Weight Independent Set on P6-free Graphs

  • Popis výsledku v původním jazyce

    In the classic Maximum Weight Independent Set problem, we are given a graph G with a nonnegative weight function on its vertices, and the goal is to find an independent set in G of maximum possible weight. While the problem is NP-hard in general, we give a polynomial-time algorithm working on any P6-free graph, that is, a graph that has no path on 6 vertices as an induced subgraph. This improves the polynomial-time algorithm on P5-free graphs of Lokshtanov et al. [15] and the quasipolynomial-time algorithm on P6-free graphs of Lokshtanov et al. [14]. The main technical contribution leading to our main result is enumeration of a polynomial-size family ℱ of vertex subsets with the following property: For every maximal independent set I in the graph, ℱ contains all maximal cliques of some minimal chordal completion of G that does not add any edge incident to a vertex of I.

  • Název v anglickém jazyce

    Polynomial-time Algorithm for Maximum Weight Independent Set on P6-free Graphs

  • Popis výsledku anglicky

    In the classic Maximum Weight Independent Set problem, we are given a graph G with a nonnegative weight function on its vertices, and the goal is to find an independent set in G of maximum possible weight. While the problem is NP-hard in general, we give a polynomial-time algorithm working on any P6-free graph, that is, a graph that has no path on 6 vertices as an induced subgraph. This improves the polynomial-time algorithm on P5-free graphs of Lokshtanov et al. [15] and the quasipolynomial-time algorithm on P6-free graphs of Lokshtanov et al. [14]. The main technical contribution leading to our main result is enumeration of a polynomial-size family ℱ of vertex subsets with the following property: For every maximal independent set I in the graph, ℱ contains all maximal cliques of some minimal chordal completion of G that does not add any edge incident to a vertex of I.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ACM Transactions on Algorithms

  • ISSN

    1549-6325

  • e-ISSN

  • Svazek periodika

    Neuveden

  • Číslo periodika v rámci svazku

    18

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    57

  • Strana od-do

    1-57

  • Kód UT WoS článku

    000944887800004

  • EID výsledku v databázi Scopus