Polynomial-time Algorithm for Maximum Weight Independent Set on P6-free Graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10455778" target="_blank" >RIV/00216208:11320/22:10455778 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=9l0I.d-wh0" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=9l0I.d-wh0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3414473" target="_blank" >10.1145/3414473</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Polynomial-time Algorithm for Maximum Weight Independent Set on P6-free Graphs
Popis výsledku v původním jazyce
In the classic Maximum Weight Independent Set problem, we are given a graph G with a nonnegative weight function on its vertices, and the goal is to find an independent set in G of maximum possible weight. While the problem is NP-hard in general, we give a polynomial-time algorithm working on any P6-free graph, that is, a graph that has no path on 6 vertices as an induced subgraph. This improves the polynomial-time algorithm on P5-free graphs of Lokshtanov et al. [15] and the quasipolynomial-time algorithm on P6-free graphs of Lokshtanov et al. [14]. The main technical contribution leading to our main result is enumeration of a polynomial-size family ℱ of vertex subsets with the following property: For every maximal independent set I in the graph, ℱ contains all maximal cliques of some minimal chordal completion of G that does not add any edge incident to a vertex of I.
Název v anglickém jazyce
Polynomial-time Algorithm for Maximum Weight Independent Set on P6-free Graphs
Popis výsledku anglicky
In the classic Maximum Weight Independent Set problem, we are given a graph G with a nonnegative weight function on its vertices, and the goal is to find an independent set in G of maximum possible weight. While the problem is NP-hard in general, we give a polynomial-time algorithm working on any P6-free graph, that is, a graph that has no path on 6 vertices as an induced subgraph. This improves the polynomial-time algorithm on P5-free graphs of Lokshtanov et al. [15] and the quasipolynomial-time algorithm on P6-free graphs of Lokshtanov et al. [14]. The main technical contribution leading to our main result is enumeration of a polynomial-size family ℱ of vertex subsets with the following property: For every maximal independent set I in the graph, ℱ contains all maximal cliques of some minimal chordal completion of G that does not add any edge incident to a vertex of I.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACM Transactions on Algorithms
ISSN
1549-6325
e-ISSN
—
Svazek periodika
Neuveden
Číslo periodika v rámci svazku
18
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
57
Strana od-do
1-57
Kód UT WoS článku
000944887800004
EID výsledku v databázi Scopus
—