Spreading pressure bumps in gas-dust discs can stall planet migration via planet-vortex interactions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10456196" target="_blank" >RIV/00216208:11320/22:10456196 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=aNn0kaYTcW" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=aNn0kaYTcW</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/mnras/stac611" target="_blank" >10.1093/mnras/stac611</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Spreading pressure bumps in gas-dust discs can stall planet migration via planet-vortex interactions
Popis výsledku v původním jazyce
We investigate the gravitational interaction between low- to intermediate-mass planets (M-p is an element of [0.06 - 210] M-circle plus) and two previously formed pressure bumps in a gas-dust protoplanetary disc. We explore how the disc structure changes due to planetinduced perturbations and also how the appearance of vortices affects planet migration. We use multifluid 2D hydrodynamical simulations and the dust is treated in the pressureless-fluid approximation, assuming a single grain size of 5 mu m. The initial surface density profiles containing two bumps are motivated by recent observations of the protoplanetary disc HD163296. When planets are allowed to migrate, either a single planet from the outer pressure maximum or two planets from each pressure maximum, the initial pressure bumps quickly spread and merge into a single bump which is radially wide and has a very low amplitude. The redistribution of the disc material is accompanied by the Rossby Wave Instability and an appearance of mini-vortices that merge in a short period of time to form a large vortex. The large vortex induces perturbations with a spiral wave pattern that propagate away from the vortex as density waves. We found that these vortex-induced spiral waves strongly interact with the spiral waves generated by the planet and we called this mechanism the 'Faraway Interaction'. It facilitates much slower and/or stagnant migration of the planets and it excites their orbital eccentricities in some cases. Our study provides a new explanation for how rocky planets can come to have a slow migration in protoplanetary discs where vortex formation occurs.
Název v anglickém jazyce
Spreading pressure bumps in gas-dust discs can stall planet migration via planet-vortex interactions
Popis výsledku anglicky
We investigate the gravitational interaction between low- to intermediate-mass planets (M-p is an element of [0.06 - 210] M-circle plus) and two previously formed pressure bumps in a gas-dust protoplanetary disc. We explore how the disc structure changes due to planetinduced perturbations and also how the appearance of vortices affects planet migration. We use multifluid 2D hydrodynamical simulations and the dust is treated in the pressureless-fluid approximation, assuming a single grain size of 5 mu m. The initial surface density profiles containing two bumps are motivated by recent observations of the protoplanetary disc HD163296. When planets are allowed to migrate, either a single planet from the outer pressure maximum or two planets from each pressure maximum, the initial pressure bumps quickly spread and merge into a single bump which is radially wide and has a very low amplitude. The redistribution of the disc material is accompanied by the Rossby Wave Instability and an appearance of mini-vortices that merge in a short period of time to form a large vortex. The large vortex induces perturbations with a spiral wave pattern that propagate away from the vortex as density waves. We found that these vortex-induced spiral waves strongly interact with the spiral waves generated by the planet and we called this mechanism the 'Faraway Interaction'. It facilitates much slower and/or stagnant migration of the planets and it excites their orbital eccentricities in some cases. Our study provides a new explanation for how rocky planets can come to have a slow migration in protoplanetary discs where vortex formation occurs.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
<a href="/cs/project/GM21-23067M" target="_blank" >GM21-23067M: Hydrodynamické interakce planet s protoplanetárními disky a původ těsných exoplanetárních soustav</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Monthly Notices of the Royal Astronomical Society
ISSN
0035-8711
e-ISSN
1365-2966
Svazek periodika
512
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
2189-2201
Kód UT WoS článku
000773021900013
EID výsledku v databázi Scopus
2-s2.0-85128650570