Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On Wave Interference in Planet Migration: Dead Zone Torques Modified by Active Zone Forcing

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10475686" target="_blank" >RIV/00216208:11320/23:10475686 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=qALCTRxEBO" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=qALCTRxEBO</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3847/1538-4357/acd1ee" target="_blank" >10.3847/1538-4357/acd1ee</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On Wave Interference in Planet Migration: Dead Zone Torques Modified by Active Zone Forcing

  • Popis výsledku v původním jazyce

    We investigate planetary migration in the dead zone of a protoplanetary disk where there is a set of spiral waves propagating inward due to the turbulence in the active zone and the Rossby wave instability, which occurs at the transition between the dead and active zones. We perform global 3D unstratified magnetohydrodynamical simulations of a gaseous disk with the FARGO3D code, using weak gradients in the static resistivity profiles that trigger the formation of a vortex at the outer edge of the dead zone. We find that once the Rossby vortex develops, spiral waves in the dead zone emerge and interact with embedded, migrating planets by wave interference, which notably changes their migration. The inward migration becomes faster depending on the mass of the planet, due mostly to the constructive (destructive) interference between the outer (inner) spiral arm of the planet and the destruction of the dynamics of the horseshoe region by means of the set of background spiral waves propagating inward. The constructive wave interference produces a more negative Lindblad differential torque, which inevitably leads to an inward migration. Lastly, for massive planets embedded in the dead zone, we find that the spiral waves can create an asymmetric, wider, and deeper gap than in the case of &amp; alpha;-disks and can prevent the formation of vortices at the outer edge of the gap. The latter could generate a faster or slower migration compared to the standard type-II migration.

  • Název v anglickém jazyce

    On Wave Interference in Planet Migration: Dead Zone Torques Modified by Active Zone Forcing

  • Popis výsledku anglicky

    We investigate planetary migration in the dead zone of a protoplanetary disk where there is a set of spiral waves propagating inward due to the turbulence in the active zone and the Rossby wave instability, which occurs at the transition between the dead and active zones. We perform global 3D unstratified magnetohydrodynamical simulations of a gaseous disk with the FARGO3D code, using weak gradients in the static resistivity profiles that trigger the formation of a vortex at the outer edge of the dead zone. We find that once the Rossby vortex develops, spiral waves in the dead zone emerge and interact with embedded, migrating planets by wave interference, which notably changes their migration. The inward migration becomes faster depending on the mass of the planet, due mostly to the constructive (destructive) interference between the outer (inner) spiral arm of the planet and the destruction of the dynamics of the horseshoe region by means of the set of background spiral waves propagating inward. The constructive wave interference produces a more negative Lindblad differential torque, which inevitably leads to an inward migration. Lastly, for massive planets embedded in the dead zone, we find that the spiral waves can create an asymmetric, wider, and deeper gap than in the case of &amp; alpha;-disks and can prevent the formation of vortices at the outer edge of the gap. The latter could generate a faster or slower migration compared to the standard type-II migration.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10308 - Astronomy (including astrophysics,space science)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GM21-23067M" target="_blank" >GM21-23067M: Hydrodynamické interakce planet s protoplanetárními disky a původ těsných exoplanetárních soustav</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Astrophysical Journal

  • ISSN

    0004-637X

  • e-ISSN

    1538-4357

  • Svazek periodika

    951

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    14

  • Strana od-do

    81

  • Kód UT WoS článku

    001021971700001

  • EID výsledku v databázi Scopus

    2-s2.0-85164405224