Penrose junction conditions with Lambda: geometric insights into low-regularity metrics for impulsive gravitational waves
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10456328" target="_blank" >RIV/00216208:11320/22:10456328 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=6L4_IZ8YTw" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=6L4_IZ8YTw</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10714-022-02977-6" target="_blank" >10.1007/s10714-022-02977-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Penrose junction conditions with Lambda: geometric insights into low-regularity metrics for impulsive gravitational waves
Popis výsledku v původním jazyce
Impulsive gravitational waves in Minkowski space were introduced by Roger Penrose at the end of the 1960s, and have been widely studied over the decades. Here we focus on nonexpanding waves which later have been generalized to impulses traveling in all constant-curvature backgrounds, i.e., the (anti-)de Sitter universe. While Penrose's original construction was based on his vivid geometric "scissors-and-paste" approach in a flat background, until recently a comparably powerful visualization and understanding has been missing in the case with a cosmological constant Lambda not equal 0. Here we review the original Penrose construction and its generalization to non-vanishing Lambda in a pedagogical way, as well as the recently established visualization: A special family of global null geodesics defines an appropriate comoving coordinate system that allows to relate the distributional to the continuous form of the metric.
Název v anglickém jazyce
Penrose junction conditions with Lambda: geometric insights into low-regularity metrics for impulsive gravitational waves
Popis výsledku anglicky
Impulsive gravitational waves in Minkowski space were introduced by Roger Penrose at the end of the 1960s, and have been widely studied over the decades. Here we focus on nonexpanding waves which later have been generalized to impulses traveling in all constant-curvature backgrounds, i.e., the (anti-)de Sitter universe. While Penrose's original construction was based on his vivid geometric "scissors-and-paste" approach in a flat background, until recently a comparably powerful visualization and understanding has been missing in the case with a cosmological constant Lambda not equal 0. Here we review the original Penrose construction and its generalization to non-vanishing Lambda in a pedagogical way, as well as the recently established visualization: A special family of global null geodesics defines an appropriate comoving coordinate system that allows to relate the distributional to the continuous form of the metric.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-05421S" target="_blank" >GA20-05421S: Přesné prostoročasy v Einsteinově teorii, kvadratické gravitaci a dalších zobecněních</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
General Relativity and Gravitation
ISSN
0001-7701
e-ISSN
1572-9532
Svazek periodika
54
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
24
Strana od-do
96
Kód UT WoS článku
000851253300001
EID výsledku v databázi Scopus
2-s2.0-85137559351