A sharp variant of the Marcinkiewicz theorem with multipliers in Sobolev spaces of Lorentz type
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10456382" target="_blank" >RIV/00216208:11320/22:10456382 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=yq9Tr3N_5T" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=yq9Tr3N_5T</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jfa.2021.109295" target="_blank" >10.1016/j.jfa.2021.109295</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A sharp variant of the Marcinkiewicz theorem with multipliers in Sobolev spaces of Lorentz type
Popis výsledku v původním jazyce
Given a bounded measurable function sigma on R-n, we let T-sigma be the operator obtained by multiplication on the Fourier transform by sigma. Let 0 < s(1) <= s(2) <= ... <= s(n) < 1 and psi be a Schwartz function on the real line whose Fourier transform (psi) over cap is supported in [-2, -1/2] boolean OR [1/2, 2] and which satisfies Sigma(j is an element of Z) (psi) over cap (2(-j) xi) = 1 for all xi not equal 0. In this work we provide a sharp form of the Marcinkiewicz multiplier theorem on L-p by finding an almost optimal function space with the property that, if the function (xi(1), ... , xi(n)) -> Pi(n)(i=1)(I - partial derivative(2)(i))(si/2) [Pi(n)(i=1)(psi) over cap(xi(i))sigma(2(j1) xi(1), ... , 2(jn) xi(n))] belongs to it uniformly in j(1), ... , j(n) is an element of Z, then T-sigma is bounded on L-p(R-n) when vertical bar 1/p - 1/2 vertical bar < s(1) and 1 < p < infinity. In the case where s(i) not equal s(i+1) for all i, it was proved in [12] that the Lorentz space L-1/s1,L-1(R-n) is the function space sought. Here we address the significantly more difficult general case when for certain indices i we might have s(i) = s(i+1). We obtain a version of the Marcinkiewicz multiplier theorem in which the space L-1/s1,L-1 is replaced by an appropriate Lorentz space associated with a certain concave function related to the number of terms among s(2), ... , s(n) that equal s(1). Our result is optimal up to an arbitrarily small power of the logarithm in the defining concave function of the Lorentz space. (c) 2021 Elsevier Inc. All rights reserved.
Název v anglickém jazyce
A sharp variant of the Marcinkiewicz theorem with multipliers in Sobolev spaces of Lorentz type
Popis výsledku anglicky
Given a bounded measurable function sigma on R-n, we let T-sigma be the operator obtained by multiplication on the Fourier transform by sigma. Let 0 < s(1) <= s(2) <= ... <= s(n) < 1 and psi be a Schwartz function on the real line whose Fourier transform (psi) over cap is supported in [-2, -1/2] boolean OR [1/2, 2] and which satisfies Sigma(j is an element of Z) (psi) over cap (2(-j) xi) = 1 for all xi not equal 0. In this work we provide a sharp form of the Marcinkiewicz multiplier theorem on L-p by finding an almost optimal function space with the property that, if the function (xi(1), ... , xi(n)) -> Pi(n)(i=1)(I - partial derivative(2)(i))(si/2) [Pi(n)(i=1)(psi) over cap(xi(i))sigma(2(j1) xi(1), ... , 2(jn) xi(n))] belongs to it uniformly in j(1), ... , j(n) is an element of Z, then T-sigma is bounded on L-p(R-n) when vertical bar 1/p - 1/2 vertical bar < s(1) and 1 < p < infinity. In the case where s(i) not equal s(i+1) for all i, it was proved in [12] that the Lorentz space L-1/s1,L-1(R-n) is the function space sought. Here we address the significantly more difficult general case when for certain indices i we might have s(i) = s(i+1). We obtain a version of the Marcinkiewicz multiplier theorem in which the space L-1/s1,L-1 is replaced by an appropriate Lorentz space associated with a certain concave function related to the number of terms among s(2), ... , s(n) that equal s(1). Our result is optimal up to an arbitrarily small power of the logarithm in the defining concave function of the Lorentz space. (c) 2021 Elsevier Inc. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Functional Analysis
ISSN
0022-1236
e-ISSN
1096-0783
Svazek periodika
282
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
36
Strana od-do
109295
Kód UT WoS článku
000715370800001
EID výsledku v databázi Scopus
2-s2.0-85118526392