Coloring near-quadrangulations of the cylinder and the torus
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10437031" target="_blank" >RIV/00216208:11320/21:10437031 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=c7RoMCpI5H" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=c7RoMCpI5H</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ejc.2020.103258" target="_blank" >10.1016/j.ejc.2020.103258</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Coloring near-quadrangulations of the cylinder and the torus
Popis výsledku v původním jazyce
Let G be a simple connected plane graph and let C-1 and C-2 be cycles in G bounding distinct faces f(1) and f(2). For a positive integer l, let r(l) denote the number of integers n such that -l <= n <= l, is divisible by 3, and n has the same parity as .e; in particular, r(4) = 1. Let r(f1), (f2) (G) = Pi(f) r (vertical bar f vertical bar), where the product is over the faces f of G distinct from f(1) and f(2) , and let q(G) = 1+ Sigma(f:vertical bar f vertical bar not equal 4 )vertical bar f vertical bar where the sum is over all faces f of G (of length other than four). We give an algorithm with time complexity O(r(f1,f2) (G)q(G)vertical bar G vertical bar) which, given a 3-coloring psi of C-1 boolean OR C-2, either finds an extension of psi to a 3-coloring of G, or correctly decides no such extension exists. The algorithm is based on a min-max theorem for a variant of integer 2-commodity flows, and consequently in the negative case produces an obstruction to the existence of the extension. As a corollary, we show that every triangle-free graph drawn in the torus with edge-width at least 21 is 3-colorable. (C) 2020 Elsevier Ltd. All rights reserved.
Název v anglickém jazyce
Coloring near-quadrangulations of the cylinder and the torus
Popis výsledku anglicky
Let G be a simple connected plane graph and let C-1 and C-2 be cycles in G bounding distinct faces f(1) and f(2). For a positive integer l, let r(l) denote the number of integers n such that -l <= n <= l, is divisible by 3, and n has the same parity as .e; in particular, r(4) = 1. Let r(f1), (f2) (G) = Pi(f) r (vertical bar f vertical bar), where the product is over the faces f of G distinct from f(1) and f(2) , and let q(G) = 1+ Sigma(f:vertical bar f vertical bar not equal 4 )vertical bar f vertical bar where the sum is over all faces f of G (of length other than four). We give an algorithm with time complexity O(r(f1,f2) (G)q(G)vertical bar G vertical bar) which, given a 3-coloring psi of C-1 boolean OR C-2, either finds an extension of psi to a 3-coloring of G, or correctly decides no such extension exists. The algorithm is based on a min-max theorem for a variant of integer 2-commodity flows, and consequently in the negative case produces an obstruction to the existence of the extension. As a corollary, we show that every triangle-free graph drawn in the torus with edge-width at least 21 is 3-colorable. (C) 2020 Elsevier Ltd. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-04611S" target="_blank" >GA17-04611S: Ramseyovské aspekty barvení grafů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
European Journal of Combinatorics
ISSN
0195-6698
e-ISSN
—
Svazek periodika
93
Číslo periodika v rámci svazku
March 2021
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
22
Strana od-do
103258
Kód UT WoS článku
000607517300008
EID výsledku v databázi Scopus
2-s2.0-85096197095